A dice game

[Year 2019 – 2020]

SURNAMEs AND FIRST NAMEs OF STUDENTS, GRADES: Sabrina-Elena BENChEA, George-Octavian GRUMĂZESCU, Mara-Elena MARDAraSEVIcI, Ioana MUHA, Tudor-Andrei PRICOP, George-Constantin RUSU, George-Ioan STOICA, students in 10th grade.

SCHOOL: Colegiul Național Costache Negruzzi, Iași

TEACHER: Adrian Zanoschi

RESEARCHER: Iulian Stoleriu, Faculty of Mathematics, “Alexandru Ioan Cuza” University Iași.

1. PRESENTATION OF THE RESEARCH TOPIC

The paper deals with the winning chances in a game of dice. We firstly consider the distribution of the sum of a set of four classical dice that are rolled together, then we consider other types of dice, which take the form of the remaining four Platonic solids.

2. BRIEF PRESENTATION OF THE CONJECTURES AND RESULTS OBTAINED

At a certain casino, four fair classical dice are thrown simultaneously. If a player bets on a certain sum, what are the chances of winning? Find the most probable sum of the points that appear on the top faces and the expected number of throws needed to obtain it for the first time?

You may also consider similar questions for the case of four identical dice that take the form of a general regular convex polyhedron.
THE SOLUTION

At a certain casino, four fair dice are thrown simultaneously. If a player bets on a certain sum, what are the chances of winning? What is the most probable sum and what is the expected number of throws needed to obtain it for the first time?

Method I.

Let’s suppose that the numbers shown on the four dice after one throw are \(x_1, x_2, x_3, x_4 \), where \(x_i \in \{1, 2, 3, 4, 5, 6\} , \ i = 1,4 \).

Denote the sum of these values by \(S_k = k = x_1 + x_2 + x_3 + x_4 \) and the number of possible cases as \(P_k \). We observe that \(S_k = \{4, 5, 6, ..., 23, 24\} \). Thus, it can be attributed 21 values. We will prove that the sum with the highest chance of appearance is \(S_{14} = 14 \) which means that \(P_{14} \) is the greatest out of the numbers \(P_k , k = 4,24 \).

Because the equation:

\[
x_1 + x_2 + x_3 + x_4 = k , \text{ whilst } x_i \in \{1, 2, 3, 4, 5, 6\} , \ i = 1,4
\]

is equivalent to the equation:

\[
(7 - x_1) + (7 - x_2) + (7 - x_3) + (7 - x_4) = 28 - k , \text{ whilst } 7 - x_i \in \{1, 2, 3, 4, 5, 6\} , \ i = 1,4
\]

we have \(P_k = P_{28-k} \), for any \(k \in \{4, 5, ..., 13\} \).

Thus, it suffices to determine \(P_4, P_5, ..., P_{13} \) and \(P_{14} \). To do this, we shall prove the following lemma:

Lemma. The number of solutions of the equation:

\[
(1) \quad x_1 + x_2 + x_3 + x_4 = k ,
\]

where \(x_1, x_2, x_3, x_4, k \) are positive integers and \(k \geq 4 \) is equal to \(\binom{k-1}{3} \).

Proof. Any solution of equation (1) can be obtained by placing the 3 *sticks* between the terms of a string of *k ones* (between two *terms* we can place no more than one *stick*). For example, the figure:
represents the solution \(x_1 = 3, x_2 = 5, x_3 = 5, x_4 = 1 \) of the equation \(x_1 + x_2 + x_3 + x_4 = 14 \).

The number of solutions of equation (1) is equal to the number of ways in which we can choose three places to place the three sticks out of \(k - 1 \) spaces between the terms of the string. Thus, the result is \(\binom{k-1}{3} \).

Let's return to the initial idea of finding the number of possibilities \(P_4, P_5, ..., P_{13} \text{ and } P_{14} \).

According to the Lemma, equation (1) has \(\binom{k-1}{3} \) solutions for any \(k \in \{4, 5, ..., 13, 14\} \). But because \(x_1, x_2, x_3, x_4 \) are numbers written on dice, we have \(x_i \in \{1, 2, 3, 4, 5, 6\}, \ i = 1,4, \) so some of the \(\binom{k-1}{3} \) solutions will not work.

If \((x_1, x_2, x_3, x_4) \) is a solution of equation (1) and at least 2 of its components are greater than 6, then:

\[
x_1 + x_2 + x_3 + x_4 \geq 1+1+7+7 = 16
\]

Because \(k \leq 14 \), we know that at most one of the components of the solution \((x_1, x_2, x_3, x_4) \) could be greater than 6.

For \(k \in \{4, 5, 6, 7, 8, 9\} \), all the numbers \(x_1, x_2, x_3, x_4 \) are less than or equal to 6, therefore, in each one of the 6 cases, the number of solutions for equation (1) is \(\binom{k-1}{3} \), so \(P_4 = \binom{4-1}{3} = 1, \)
\[
P_5 = \binom{5-1}{3} = 4, \quad P_6 = \binom{6-1}{3} = 10, \quad P_7 = \binom{7-1}{3} = 20, \quad P_8 = \binom{8-1}{3} = 35, \quad P_9 = \binom{9-1}{3} = 56.
\]

For \(k = 10 \), equation (1) has, except for the valid solutions, the solutions: \((7, 1, 1, 1), (1,7,1,1), (1,1,7,1), (1,1,1,7) \). So, \(P_{10} = \binom{10-1}{3} - 4 = 80 \).
For $k=11$, equation (1) has, other than the valid solutions, the solutions: $(8, 1, 1, 1)$ with its permutations (4 in total) and $(7, 2, 1, 1)$ with its permutations (12 in total). So, $P_{11} = \binom{11-1}{3} - (4 + 12) = 104$.

For $k=12$, equation (1) has the following non-valid solutions: $(9, 1, 1, 1)$ and its permutations (4 in total), $(8, 2, 1, 1)$ and its permutations (12 in total), $(7, 3, 1, 1)$ and its permutations (12 in total) and $(7, 2, 2, 1)$ and its permutations (12 in total). Thus, $P_{12} = \binom{12-1}{3} - (4 + 12 + 12 + 12) = 125$.

For $k=13$, equation (1) has, other than the valid solutions, the solutions: $(10, 1, 1, 1)$ and its permutations (4 in total), $(9, 2, 1, 1)$ and its permutations (12 in total), $(8, 3, 1, 1)$ and its permutations (12 in total), $(8, 2, 2, 1)$ and its permutations (12 in total), $(7, 4, 1, 1)$ and its permutations (12 in total), $(7, 3, 2, 1)$ and its permutations (24 in total) and $(7, 2, 2, 2)$ and its permutations (4 in total). Hence, $P_{13} = \binom{13-1}{3} - (4 + 12 + 12 + 12 + 24 + 4) = 140$.

For $k=14$, equation (1) has the following non-valid solutions: $(11, 1, 1, 1)$ and its permutations (4 in total), $(10, 2, 1, 1)$ and its permutations (12 in total), $(9, 3, 1, 1)$ and its permutations (12 in total), $(9, 2, 2, 1)$ and its permutations (12 in total), $(8, 4, 1, 1)$ and its permutations (12 in total), $(8, 3, 2, 1)$, and its permutations (24 in total), $(8, 2, 2, 2)$ and its permutations (4 in total), $(7, 5, 1, 1)$ and its permutations (12 in total), $(7, 4, 2, 1)$ and its permutations (24 in total), $(7, 3, 3, 1)$ and its permutations (12 in total), and $(7, 3, 2, 2)$ and its permutations (12 in total), so $P_{14} = \binom{14-1}{3} - (4 + 12 + 12 + 12 + 24 + 4 + 12 + 24 + 12 + 12) = 146$.

We organise all the results in the following table:

| S_k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|------|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| P_k | 1 | 4 | 10 | 20 | 35 | 56 | 80 | 104 | 125 | 140 | 146 | 140 | 125 | 104 | 80 | 56 | 35 | 20 | 10 | 4 | 1 |

Thus, the sum with the highest chance of appearing is $S_{14} = 14$.

Method II.
Due to the fact that $6^4 = 1296$ is a very small number (for a computer), we can take all the possibilities and count the sum at each step.

```c++
#include <bits/stdc++.h>
using namespace std;

double fr[40];

int main()
{
    for(int i=1; i<=6; i++)
        for(int j=1; j<=6; j++)
            for(int q=1; q<=6; q++)
                for(int l=1; l<=6; l++)
                    fr[i+j+q+l]++;

    for(int i=4; i<=24; i++)
        cout<<setprecision(3)<<"\n";

    return 0;
}
```

We have written 21 lines, each line showing the sum and the probability of that sum to appear.

As we can see above, the sum $S_{14} = 14$ has the biggest chance of appearing. The probability of obtaining this sum is equal to:

$$p = \frac{\text{number of favorable cases}}{\text{number of possible cases}} = \frac{146}{6^4} = \frac{146}{1296} = \frac{73}{648}$$

Let $q = 1 - p$.

Denote the number of necessary tries for obtaining sum 14 for the first time by the discrete random variable X and with p_k the probability of obtaining sum 14 for the first time after throw number k. If we don’t succeed after $k-1$ tries and we do succeed after the next throw then, evidently, the first time we’ll get the sum 14 is after throw number k. So, $p_k = q^{k-1} \cdot p$.

We have:

$$
\begin{array}{c|cccccccccc}
X & 1 & 2 & 3 & 4 & \cdots & k & \cdots \\
\text{Prob.} & p_1 = p & p_2 = q \cdot p & p_3 = q^2 \cdot p & p_4 = q^3 \cdot p & \cdots & p_k = q^{k-1} \cdot p & \cdots \\
\end{array}
$$
The expected number of throws of the four dice until we observe sum 14 is:

\[E(X) = 1 \cdot p + 2 \cdot q \cdot p + 3 \cdot q^2 \cdot p + \ldots + k \cdot q^{k-1} \cdot p + \ldots = \lim_{n \to \infty} \sum_{k=1}^{n} k \cdot q^{k-1} \cdot p. \]

Now, we need to compute the sum:

\[E_n = \sum_{k=1}^{n} k \cdot q^{k-1} \cdot p. \]

We have:

\[E_n - q \cdot E_n = p + 2 \cdot q \cdot p + 3 \cdot q^2 \cdot p + \ldots + n \cdot q^{n-1} \cdot p - q \cdot p - 2 \cdot q^2 \cdot p - \ldots - (n-1) \cdot q^{n-1} \cdot p - n \cdot q^n \cdot p \]

\[= p + q \cdot p + q^2 \cdot p + \ldots + q^{n-1} \cdot p - n \cdot q^n \cdot p \]

\[= p \cdot \frac{1-q^n}{1-q} - n \cdot q^n \cdot p = p \cdot \frac{(1-q^n) - n \cdot q^n \cdot p \cdot (1-q)}{1-q}, \]

from which we deduce that:

\[E_n = \frac{p - p \cdot (1+n) \cdot q^n + n \cdot q^{n+1}}{(1-q)^2}. \]

Because \(q \in (0,1) \), we have:

\[\lim_{n \to +\infty} (1+n) \cdot q^n = \lim_{n \to +\infty} n \cdot q^{n+1} = 0, \]

\[E(X) = \lim_{n \to +\infty} \sum_{k=1}^{n} k \cdot q^{k-1} \cdot p = \lim_{n \to +\infty} E_n = \frac{p}{(1-q)^2} = \frac{p}{p^2} = \frac{1}{p}. \]

Thus, the expected number of throws of four dice until we first get sum 14 is:

\[\frac{1}{p} = \frac{648}{73} \approx 8.87 \approx 9. \]

In order to find out the \(E(X) \) we can also use this formula:

\[E(X) = E(X|\text{for success in the first throw}) \cdot p + E(X|\text{for failure in the first throw}) \cdot (1-p) \]

\[= 1 \cdot p + (E(X)+1) \cdot (1-p) = 1 + (1-p)E(X), \]

so \(E(X) - (1-p)E(X) = 1 \), therefore \(E(X) = \frac{1}{p} \).
It is known for more than two thousands years that the only regular and convex polyhedra are the Platonic solids. These polyhedra are named after the ancient Greek philosopher Plato. Except for cube (regular hexahedron), they are:

1. regular tetrahedron
2. regular octahedron
3. regular dodecahedron
4. regular icosahedron

We now want to solve the same problem when the dice would have each of the above shapes.

1. If the dice are shaped as a regular tetrahedron, then the sum $S_k \in \{4, 5, 6, ..., 15, 16\}$. Using the same reasoning as with the regular cubic dice, we get the following table:

<table>
<thead>
<tr>
<th>S_k</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_k</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>31</td>
<td>40</td>
<td>44</td>
<td>40</td>
<td>31</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, the sum with the highest chance of appearing is $S_{10} = 10$ and the expected number of throws of four dice until we first get sum 10 is:

$$\frac{1}{p} = \frac{64}{11} \approx 5.81 \approx 6.$$

2. If the dice are shaped as a regular octahedron, then the sum $S_k \in \{4, 5, 6, ..., 31, 32\}$. Using the same reasoning as with the regular cubic dice, we get the following table:

<table>
<thead>
<tr>
<th>S_k</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_k</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>56</td>
<td>84</td>
<td>120</td>
<td>161</td>
<td>204</td>
<td>246</td>
<td>284</td>
<td>315</td>
<td>336</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_k</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_k</td>
<td>344</td>
<td>336</td>
<td>315</td>
<td>284</td>
<td>246</td>
<td>204</td>
<td>161</td>
<td>120</td>
<td>84</td>
<td>56</td>
<td>35</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, the sum with the highest chance of appearing is $S_{18} = 18$ and the expected number of throws of four dice until we first get sum 18 is:
3. If the dice are shaped as a regular dodecahedron, then the sum $S_k \in \{4, 5, 6, ..., 47, 48 \}$. Using the same reasoning as with the regular cubic dice, we get the following table:

<table>
<thead>
<tr>
<th>S_k</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_k</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>56</td>
<td>84</td>
<td>120</td>
<td>165</td>
<td>220</td>
<td>286</td>
<td>364</td>
<td>451</td>
<td>544</td>
<td>640</td>
<td>736</td>
</tr>
</tbody>
</table>

Thus, the sum with the highest chance of appearing is $S_{26} = 26$ and the expected number of throws of four dice until we first get sum 26 is:

$$\frac{1}{p} = \frac{12^4}{1156} \approx 17,93 \approx 18.$$

4. In the case of a regular icosahedron, we can see, by using a computer, that the sum with the highest chance of appearing is $S_{42} = 42$ and the expected number of throws of four dice until we first get sum 42 is:

$$\frac{1}{p} = \frac{20^4}{5340} \approx 29,96 \approx 30.$$

3. CONCLUSION

In this paper, we have found the distribution of the sum of points that appear on the top faces when four classical identical dice are rolled together. Also, we have considered a similar problem when the dice take the form of a: regular tetrahedron, regular octahedron, regular dodecahedron and regular icosahedron. Together with the regular hexahedron (the cube), these five polyhedra are the only regular convex polyhedra, also called Platonic solids.
In each case, we have calculated the expected number of throws until the most probable sum appears for the first time.