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1. PRESENTATION OF THE RESEARCH TOPIC 
 

In this article, we are counting paths that join two opposite corners of a rectangular grid.  The 
grid is supposed to represent the street map of a town center.  Two grid sizes and various traffic 
restrictions are considered. 

 
2. BRIEF PRESENTATION OF THE CONJECTURES AND RESULTS OBTAINED 
 

In the following, we will agree that: 
node = the intersection point of two lines of the map; 
street = a segment that unites two adjacent nodes of the map; 
path = a succession of streets. 

 

Diagrams ( )!  and ( )!  below represent the mapping of the streets from the center of two 

towns, Little Rock and, respectively, Big Hill . Each side of a square represents a new street, and 
in each node one touristic attraction exists. On each of these streets, you can walk (as a 
pedestrian) in any direction or you can drive only in two directions, rightward or upward. 
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  (&) : The Little Rock  town center                          ('): The Big Hill town center 

 

We intend to address the following problems: 

( )a  In how many ways can one drive from point A to point B of the Little Rock town without 

counting the possible restrictions from the route?  

( )1a   Same question as in ( )a , but with the restriction to pass through attraction O. 

( )2a  Same question as in ( )a , taking into account that the traffic is closed on the street 

marked in Figure ( )! (in other words, the respective square becomes inaccessible). 

( )3a  For which street, supposing it is closed, the number of ways of driving from A to B is 

minimal? Is this the only street having this property? 

On two of the Big Hill  town streets (marked in the figure) access is forbidden for cars and 
pedestrians alike. 

( )b  In how many ways can one drive from point A to point B of Big Hill , taking into account 

the restrictions? 

( )c  Two walkers, Alin and Bianca, depart simultaneously from points A and B, respectively. 

Alin may move only one square right or upwards, while Bianca may move only one square left 
or downwards (when looking at the grid from the same perspective). For each of them, the 
choice of direction is made with equal probabilities in every intersection. What are the odds that 
Alin and Bianca meet? 

 ( )d  Apart from the two above mentioned restrictions, other streets in the town will be under 

repair and will be inaccessible for a while. Find out the maximum number of streets that can be 
under repair simultaneously, so that all the touristic objectives are connected to point A by at 
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least one path.  We maintain the original rules of movement. The path starting at A may end in 
any point (touristic objective).  

 

We shall solve the traffic problems in two ways: analytically, by using tools from 
combinatorics and numerically, using C++ programming.  

 

3. THEORETICAL NOTIONS 
 

A. Let n ∗∈• . The product ! 1 2 ...n n= ⋅ ⋅ ⋅  is called n factorial. By convention, 0! 1= .   

We observe that! ( 1)!n n n= ! " , for any n ∗∈• . 

Letn ∗∈• , , .k k n! "!  The number of subsets which have k elements of a set with n 

elements is named  combinations of n elements taken k at a time and it is written as 
n

k
! "
# $
% &

 . 

Of course,
n n

k n k
! " ! "

=# $ # $%& ' & '
, because choosing a subset with k elements is equivalent to 

choosing a subset with n k!  elements to be left out. 

It is known that 
( )

!
! !

n n
k k n k

! "
=# $ % &' (

, for anyn !" •  and any , .k k n! "!   

 

B. Theorem (Principle of inclusion-exclusion for two sets) If A and B are two finite sets, then 

 .A B A B A B! = + " #   

 

Figure 1,
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In other words, given 2 finite sets, the number of elements belonging to at least one of the 
sets is equal to the sum of the number of elements in each set, from which we subtract the 
number of elements common to the 2 sets.!

 

C. The multiplication principle (the product rule). If A and B are two sets and A B!  notes 

their Cartesian product (i.e. { }( , ) | ,A B a b a A b B! = " " ), then 

 .A B A B! = "   (1.1) 

Otherwise stated, given two finite sets, the number of ways in which one can form ordered 
pairs in which the first element is in the first set and the second element is in the second set is 
equal to the product of the number of elements of the two sets. 

Formula (1.1) generalizes to a finite number of sets1 2, , , nA A A! :  

 1 2 1 2 .n nA A A A A A! ! ! = " " "! !   

4. THE SOLUTION  

( )a  In how many ways can one drive from point A to point B of the Little Rock town 

without counting the possible restrictions from the route?  

First method 

 We are computing the number of paths starting from A and ending in B, satisfying the 
requirements in the problem. Figure 2 illustrates how we must proceed:  

 

 

Figure 2 

So we observe that the number of paths from A to B which respect all the conditions is 56. 

Second method 

Because a car can move across streets only in two directions, rightward or upward, to arrive 
from point A to point B we must go five streets to the right and three streets upward, in a certain 
order. To describe the path, we can picture that we have five R letters and three U letters. When 
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the car goes to the right we write R and when it goes upward we write U. For each possible route 
we obtain a unique sequence of eight letters. Figure 3 demonstrates this.   

 

Figure 3 

To calculate the number of possible route returns we calculate the number of different 
sequences which are written with five R letters and three U letters. 

We observe that to construct a sequence knowing the position of the three U letters is 
enough. So it is enough to know which are the 3 numbers from 1 to 8 which correspond to the 
position of the U letters in the sequence. These 3 numbers form a subset with 3 elements from 
the set { }1,2,3,4,5,6,7,8P = . In conclusion, the number of possible routes is the number of 

subsets with 3 elements from the set P with 8 elements, that is 
8 8! 6 7 8 56
3 3! 5! 1 2 3

! " # #
= = =$ % # # #& '

. 

More general, if the map was a rectangle with length composed by a  number of streets and 
the width being a b number of streets, the number of routes from which a driver can choose to 

get from one corner of the map to the opposite corner would be 
( )!

.
! !

a b a b a b
a b a b
+ + +⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
  

Third method: C++ program 

Let us consider the grid from Figure 4: 

 

Figure 4 
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For n=4 and m=6, we obtain 56. In the program n is the number of vertical nodes, m is the 
number of horizontal nodes and the element [ ][ ]h i j  of the matrix h stores how many paths arrive 

in the node ( , )i j , with 1 i n! ! and 1 j m! !  (node coordinates are given in Figure 4). 

( )1a  
 Same question as in ( )a , but with the restriction to pass through attraction O. 

First method  

Each path from A to B is composed by a path from A to O and a path from O to B (paths 
which respect the conditions) (Figure 5).  

The pathÕs map from A to O is a rectangle with length composed by 2 streets and width 

composed by a street, so the number of possible routes is 
1 2 3

3
1 1

+! " ! "
= =# $ # $

% & % &
. The pathÕs map from 

O to B is a rectangle with length composed by 3 streets and width composed by 2 streets, so the 

number of possible routes is 
2 3 5 5!

10
2 2 2! 3!

+! " ! "
= = =# $ # $ %& ' & '

  (see Figure 6). 

In conclusion, according to the product rule, the number of routes from A to B, which pass 
through O, is 3 10 30! = . 
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                        Figure 5                                                                    Figure 6 
Second method : C++ program 
In addition to the first program, ( , )x y  is the node we must pass through. 

 
For  n=4 and m=6, we obtain 30 paths. 

 

( )2a  Same question as in ( )a , taking into account that the traffic is closed on street CD 

(see Figure 7) (in other words, the respective square becomes inaccessible). 
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                                    Figure 7                                                  Figure 8 

First method  

One may count the number of paths that verify the restriction by subtracting the number of 
paths from A to B (which is 56, according to point ( )a ) and the number of paths that contain 

street CD closed to traffic . 

A path that contains street CD is composed of a path from A to C, street CD and a path from 
D to B (see Figure 8). 

The number of paths from A to C is 
3 1 4

= 4
1 1

+! " ! "
=# $ # $

% & % &
. The number of paths from D to B is 

2 1 3
= 3

2 2

+! " ! "
=# $ # $

% & % &
. 

Summing these, there are 4 1 3 12! ! =  paths which contain street CD. 

In conclusion, the number of paths which avoid street CD  is 56 12 44! = .  

 

Second method : C++ program 

In this program the coordinates of point C are ( , )x y   and the coordinates of point D are, of 

course, ( , 1)x y+ .  



!"#$%&'%()"*+,-./0 1-./2, 345&6785,*9:74'95,;34<=9>?&,*&6@8AA7B,C9D7E,
F96&,M,

 
 

For n=4 and m=6, we obtain 44 paths. 

 

 

 

 

 

 

( )3a For which street, supposing it is closed, the number of ways of driving from A to B 

is minimal? Is this the only street having this property? 

First method : C++ program 
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The variable nrmin returns the minimum number of paths, and the pair of variables 

(xmin1,ymin1) and (xmin2,ymin2) carry the coordinates of the final nodes of the searched streets. 
For n=4 and m=6, we obtain that the minimum number of paths is 21. There are two streets 

with this property, namely the street that connects nodes (1,5) and (1,6)  and the street that 

connects nodes (4,1)and (4,2). 

 
 
Second method: A computing method 
The number of paths that donÕt contain a given street is minimal if and only if the number of 

paths containing that street is maximal. For each street CD of the map, we count                      
how many paths contain that street. A path through CD is composed by a path from A to C, street 
CD and a path from D to B. 
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                            Figure 9                                                               Figure 10 

 
i) If the street is horizontal and  joins point C, of coordinates ( , )a b , with point D, of  

coordinates ( 1, )a b+ , where 0 4a≤ ≤ , 0 3b! !  (see Figure 9), then the map of paths  from  A 

to C is a a b! rectangle and the map of paths from  D to B is a rectangle with sides of length 
5 ( 1) 4a a! + = !  and 3 b! . Therefore, by the product rule, the number of paths that contain 

street CD is   

1

(4 ) (3 ) ( )! (7 )!
( , ) .

4 ! ! (4 )! (3 )!

a b a b a b a b
D a b

a a a b a b

+ ! + !" # " # + ! !
= $ = $% & % &! $ ! $ !' ( ' (

 

 
ii)  If the street is vertical and joins point C, of coordinates ( , )a b , with point D, of 

coordinates ( , 1)a b+ , where 0 5a! ! , 0 2b! !  (see Figure 10), than the map of paths  from A 

to C is a a b! rectangle and the map of paths from  D to B  is a rectangle with sides of length 
5 a!  and 3 ( 1) 2b b! + = ! . It follows that the number of paths that contain street CD is  

2

(5 ) (2 ) ( )! (7 )!
( , )

5 ! ! (5 )! (2 )!

a b a b a b a b
D a b

a a a b a b

+ ! + !" # " # + ! !
= $ = $% & % &! $ ! $ !' ( ' (

. 

 
We are now investigating the position and the orientation of the street CD for which the 

number of paths passing through this street is maximum. We have the following cases: 
 
¥ If 0b = , then  

1

2

(7 )! (5 )(6 )(7 )
( ,0) 1 ;

(4 )! 3! 6

(7 )! (6 )(7 )
( ,0) 1 .

(5 )! 2! 2

a a a a
D a

a

a a a
D a

a

! ! ! !
= " =

! "

! ! !
= " =

! "

 

Because expressions 5 ,6 ,7a a a! ! !  get larger as a gets smaller, the maximum values in 

this case are 1(0,0) 35D = and 2(0,0) 21D = ; we keep in mind the highest value, 1(0,0) 35D = . 

 
 
¥ If 1b = , then 
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1

2

( 1)! (6 )! ( 1)(5 )(6 )
( ,1) ;

! 1! (4 )! 2! 2

( 1)! (6 )!
( ,1) ( 1)(6 ).

! 1! (5 )! 1!

a a a a a
D a

a a

a a
D a a a

a a

+ ! + ! !
= " =

" ! "

+ !
= " = + !

" ! "

 

From the table of values 
a  0 1 2 3 4 5 

1( ,1)D a  15 20 18 12 5 - 

2( ,1)D a  6 10 12 12 10 6 

we reason that in this case 1D  and 2D  take on values smaller than 35. 

¥ If  2b = , then  

1

( 2)! (5 )! ( 1)( 2)(5 )
( ,2)

! 2! (4 )! 1! 2
a a a a a

D a
a a

+ ! + + !
= " =

" ! "
 

and the table of values 
a  0 1 2 3 4 

1( ,2)D a  5 12 18 20 15 

shows, again, smaller values than 35. Moreover,  

2

( 2)! ( 1)( 2)
( ,2) 1

! 2! 2
a a a

D a
a

+ + +
= ! =

!
 , 

and the expressions 1, 2a a+ +  get larger as  a gets larger, hence the highest value that we can 

obtain is 2(5,2) 21 35D = < .  

¥ If 3b =  , then   

1

( 3)! ( 1)( 2)( 3)
( ,3) 1

! 3! 6
a a a a

D a
a

+ + + +
= ! =

!
, 

and the expressions  1, 2, 3a a a+ + +  increase as  a increases, so the maximum value in this case 

is 1(4,3) 35D = .  

 
In conclusion, the largest number of paths, 35, pass either through the street that joins the 

points of coordinates (0,0) and (1,0) or through the street that joins the points of coordinates 

(4,3) and (5,3)(the problem has two solutions Ð see Figure 11).  

 
Figure 11 
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We observe that the street that joins the points of coordinates (0,0) and (1,0) is the street 

that joins the nodes (4,1) and (4, 2) from the C++ program (see Figure 4). Also, the street that 

joins the points of coordinates (4,3) and (5,3)is the street that joins the nodes (1,5) and (1,6) 

from the program. 
If one of these streets closes, the number of ways of driving from A to B is minimal. More 

precisely, since the total number of paths that join A and B is 56, there are 56 35 21! =  possible 
paths left, as the C++ program also states. 

 
 
On two of the Big Hill  town streets (as marked in Figure 12) access is forbidden for cars 

and pedestrians alike. 

( )b  In how many ways can one drive from point A to point B of Big Hill , taking into 

account the restrictions? 

 

Figure 12. The center of the town Big Hill  

First, since the map in Figure 12 is a rectangle with the longer side of 9 streets and the shorter 
side of 5 streets, proceeding as at point ( )a , we infer that if none of the streets had been closed to 

traffic, the number of possible paths from A to B would have been  

9 5 14! 10 11 12 13 14
2002.

5 9! 5! 1 2 3 4 5ABD
+! " # # # #

= = = =$ % # # # # #& '
 

In order to calculate how many paths avoid streets MN and PQ, we will subtract from ABD  

the number closedD  of paths that contain at least one of the streets MN and PQ.  According to the 

inclusion-exclusion principle, the value closedD  is the sum of the number MND  of paths from A to 

B that contain street MN and the number PQD  of paths from A to B that contain street PQ, from 

which we subtract the number ,MN PQD  of paths from A to B that contain both streets, because 

these paths have been summed twice.  
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Figure 13 

A path from A to B including street MN is the union of a path from A to M, street MN and a 
path from N to B (see Figure 13). Because the map of the streets from A to M is a 4 1!  rectangle, 

there are 
4 1 5

5
1 1

+! " ! "
= =# $ # $

% & % &
 possible paths A-M. Since the map of the streets from N to B is a 5 3!

rectangle, there are 
5 3 8! 6 7 8

56
5 5! 3! 6

+! " # #
= = =$ % #& '

 admissible paths N-B. Therefore, 

5 1 56 280MND = ! ! = . 

 

Figure 14 

A path from A to B via street PQ is the union of a path from A to P, street PQ and a path 
from Q to B. As the map of streets from A to P is a 6 3! rectangle, and the map of streets from Q 
to B is a square with side length 2 (see Figure 14), we obtain analogously that  

6 3 2 2 9 4 9! 4! 7 8 9 3 4
1 504.

6 2 6 2 6! 3! 2! 2! 6 2PQD
+ +! " ! " ! " ! " # # #

= # # = # = # = # =$ % $ % $ % $ %# #& ' & ' & ' & '
 

Finally, a path from A to B containing streets MN and PQ is the union of a path from A to M, 
street MN, a path from N to P, street PQ and a path from Q to B. Because the map of the streets 
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from A to M is a 4 1× rectangle, the map of the streets from N to P is a 2 1! rectangle, while the 
map of the streets from Q to B is a square with side length 2  (see Figure 15), we get , 

,

4 1 2 1 2 2 5 3 4 4! 3 4
1 1 5 3 15 90.

1 1 2 1 1 2 2! 2! 2MN PQD
+ + +! " ! " ! " ! " ! " ! " #

= # # # # = # # = # # = # =$ % $ % $ % $ % $ % $ %#& ' & ' & ' & ' & ' & '
 

 

Figure 15 

Consequently, , 280 504 90 694closed MN PQ MN PQD D D D= + − = + − = , hence the number of 

paths from A to B which avoid the restricted streets are 2002 694 1308.AB closedD D! = ! =  

 

( )c  Two walkers, Alin  and Bianca, depart simultaneously from points A and B, 

respectively. Alin  may move only one square right or upwards, while Bianca may move 
only one square left or downwards (when looking at the grid from the same perspective). 
For each of them, the choice of direction is made with equal probabilities in every 
intersection. What are the odds that Alin  and Bianca meet? 

Because the map of the paths from A to B is a 9 5! rectangle, in order to get from A to B, no 
matter what path he may choose, Alin must walk 9 streets to the right and 5 streets upwards, that 
is 9 5 14+ =  streets. Likewise, in order to get from B to A, Bianca must also walk 14 streets (9 to 
the left and 5 downwards). Supposing they walk at the same speed, they must meet halfway, 
that is, after each of them walked 14 : 2 7=  streets. 

Alin can walk the 7 streets in 72  equally possible ways, because from every node of the grid 
he has two equally possible ways of choosing the direction. Analogously, Bianca also has 72

equally possible ways of walking 7 streets. Hence, by the product rule, the pair Alin-Bianca may 
move along 7 7 142 2 2! =  equally possible trajectories. 

On the other hand, as they meet, we can merge their trajectories and we get a path that 
connects points A and B, travelling to the right or upwards. In other words, the set of the 
favorable cases is the set of all paths connecting A and B, on the conditions of the problem. The 
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number of favorable cases is 
14

2002
5

! "
=# $

% &
, thus the probability that Alin and Bianca meet is equal 

to 
14 13

2002 1001 1001
0 122

2 2 8192
,= = ! . Otherwise stated, the odds that Alin and Bianca meet are 

approximately 1:7. 

 

( )d  Apart  from the two above mentioned restrictions, other streets in the town will be 

under repair and will be inaccessible for a while. Find out the maximum number of streets 
that can be under repair simultaneously, so that all the touristic  objectives are connected to 
point A by at least one path.  We maintain the original rules of movement. The path 
starting at A may end in any point (touristic  objective).  

We count how many streets we may close if we want to reach from A to any other node, not 
necessarily getting to B. 

Node 1N , the bottom right corner of the rectangle, can be reached only by following the 

bottom edge of the map, hence the streets on this edge cannot be under repair. At its turn, node 

2N , the upper-left corner of the rectangle, can be reached only by following the left vertical edge 

of the map, hence the streets on this edge cannot be under repair either (see Figure 16). In this 
way, we obtain that every node on these two edges can be reached by a path starting at A. 

 
Figure 16 

 
The rest of the nodes on the map can be reached from two directions (namely, from the left 

and from below), hence if we keep one of these streets, we may have at least a path from A to 
each of these nodes. Since the grid has 10  nodes on the horizontal and 6  nodes on the vertical, 
by removing the 10 6 1 15+ − =  nodes on the left and bottom sides, there are 6 10 15 45⋅ − =  
nodes left. In conclusion, in this case we may close at most 45 streets.   

 
An example of streets closure is given in Figure 17. 
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Figure 17 

 
 
 

5. CONCLUSIONS 
 

We have answered all the questions completely. We have also added suplimentary tasks to 
the problem, such as the C++ programming and different approaches to the solution.  By 
studying this problem, we have learned more techniques in combinatorics, probability theory and 
their applications. The problem could be a starting point in solving more delicate problems, such 
as the traffic light coordination problem in busy city centres.  
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