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Generating an octagon

Let ABCD be a square and E, F, G, H midpoints of its sides. Each midpoint is
connected by a line with its opposite side edges.

Determine the surface area of the octagon.

A E B

Generalizations

1) Generalize the problem for each parallelogram ABCD.

2) But what if the points divide the sides of the square in 3 parts? How about 47?
How does the area of the octagon change?



4) How do you make a regular octagon?

Let Ai,A2,As,Aq,As,As,A7,As be the of the octagon and AB=I, the side of the square.
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AE=2=—=£2=DG | =AEDG-rectangle | =

2 —
{A;}=DENAG=d:nd:
AE || DG

EAD=90°

=A.— midpoint of DE and AG. In the same way we demonstrate that As is the
midpoint of EC =A:As—middle line in ADEC= A1A5=%. In the same way we

demonstrate that A3A7=%. =>A1O=%=A30=A50=A7O (2)
Let AiAs N AsA.={0}, O is the center of the octagon

Ai—-midpoint of DE, H->midpoint of AD =A:H is the middle line in AADE=
=AH=-2=—=A:0 = A is the midpoint of OH.

In the same way we demonstrate that A is the midpoint of OG= In AGOH: GA1 and

HA, are medians, GA N HA, = {AZ} =4, is center of gravity in AGOH.

Let 04, N GH = {M}= 0A, == - OM, OM —median

3

HG

AGOH : right isosceles triangle= {:OA2 —bisector G/OE (1) = 04, = HE R
OM = - =

In ADGH : right triangle, DG = DH = %: Using the Pythagorean Theorem:

2 2
HGZ=IT+IT=HG=J@. 4

= OA2 = % In the same way we demonstrate OA4 = OA6 = OA8 = % (3).

—_—

(1)0A2 Sbisector GOH = 90° = A0A, =A0A, = 45°. Analog to

—_—

0
A0A, =A0A =.=A0A =45 (4).
From (2), (3), (4)> AA 0A, = AA0A, =..= AAOA =
. L L, _oaoaswdpi) 4ELE
AA OA, o AA0A, T AA0A o 2 - 2 T 48



Generalization 1

AB||CD = BE||DG and BE = DG = BGDE - parallelogram = A = BE - h = 42"
BE = % = % = CG and BE||CG = BECG —parallelogram, CE, BG —~diagonals and

BG™
2

Analog to [ W —midpoint of DE = WE = =~ = SG = WE, SG||WE =
U, G »midpoint of CH, CD 'II.

CE n BG = {§} > S -»midpoint of BG = SG =

BG = DE, BG||DE = BEDG —parallelogram o

= SGWE —parallelogram
BG-d(S, WE) BG-d(B, DE)

=>ASGWE = SG - d(S, WE) = > = > =
ABEDG _ AABCD _ +A +A +A _l_A (1)
2 4 “octagon AVUG AGUT AEXQ AEQR
U, G -middle of CH, CD = UG —middle line in ACDH and = UG = S+ = 2 and

UG||DH = UG||AH and UH n AG = {V} =Using the Fundamental Theorem of
Similarity:

_ V6 _ UV _ UG _ 1 _ 1,2 _ A
AAHV ~ AGUV >k = =—r=Tr=5=>A4 =k A =—%

AH = £ = 5= = CF, AH||CF = AHCF —parallelogram= A, = AH - d(A, CF) =

__ AD-d(4,BC) __ AABCD

2 2
— AH-d(C, AH) — AAHCF — AABCD
AAHC 2 2 4

In AACD : AG, CH —»medians, AG N CH = {V}= V —center of gravity in AACD =

_ CH __ HV-d(A,CH) __ A, anc _ A 1o _ A sco
= HV == =>AAAHV_ 2 T3 12 AAGUV_ 48

A
_ _ _ aBcp
Analog to AAGUT = AAEXQ = AAEQR =g = AA.
Using (1):
4 . A — AABCD = _ AABCD _ AABCD — ABCD

octagon A 4 octagon 4 12 octagon 6

A
_ “aBcp

2



Generalization 2

Suppose that in the original problem, the segments from the vertices of the square
extended not to the midpoints of the opposite sides but to the near-quarter or some
other ratio.

A I E 3 B

F p K

L
[T [ =

L
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E, F, G, H—a quarter from one of the

ADON: isosceles right triangle = DON = 45° =
AADC: isosceles right triangle = DAC = 45°

—_—

ON, AC —straight lineq = D/OW, DAC —corresponding angles
0A —secant line

= ON||AC = Using the Fundamental Theorem of Similarity: | ADON ~ ADAC =
AVON ~ AVCA =

oD DN ON
= AD ~ DC ~ AC

L

4

ON _ OV _ VN _ 1
4

S AT Ve T av T

Al =+ - AB =+ 1 = DN, Al||DN = AIND —>para|lelogram}:>

DI n AN = {W}, DI, AN:diagonals
= W - the midpoint of AN = AN =2 - WN I>WN =2,5-VN=WV + WN =
AN =5 - VN

=>WN=%-VN=%-AN =>WV=3\/4?'I

=>AV=5~VN=>AN=5-VN,VN=%-AN

AADN:right triangle=Using the Pythagorean Theorem:

2
AD* + DN* = aN* = I + Lo an = 2T

Analog to VU = UT = TS = SR = QR = XQ = xw =21
W, S —»midpoints of AN, BM = WS||CD}=> VT||CD =

VN _ TM _ 2
= ws =3 = VTIIWS



=Using the Fundamental Theorem of Similarity:

149 uT VT 3 31

2 9 UG-cD
A =K A =— L
AUCD 25 2

AUVT

W, S —»midpoints of AN,BM = WS = 3TlAnang QU = 3Tl:> UG = % S

l
Olg _ o

=A, vr =50 = 200

9>

Analog AARST =AARQT = AAVWX = 200 T 24
Analog RT = RX = XV = 3?1 XR||CD, XV||AD = VTRX —square=

2 _ o
= = = -,
AVTRX VT 25
2 2
9l 9l 9 2 9
octagon VTRX + A 25 + 100 20 L 20 ABCD

After this latest result, we discovered a rule: if the points are at a distance of % -1

from the vertices of the square, then the area of the octagon is
=4 and forn = 4

_ o) _ i
octagon ~ n(n+1) AABCD' Forn = 2, we obtained Aoctagon 6 ABCD
we obtained A =— .4 . So, we tried to demonstrate this rule for any n>2,
octagon 20 ABCD
n € R.

I,],K,L,M,N,O,P are at a distance of % - 1 from one of the vertices of the square.

i _ .I E J _ B
N =g |
S =/
VI |
b II: | \ Enll:' F
II| I | \\ II"I h

||I_ II',J"." \T III__ __IIII- L
o | T | —— — _____-—"' | '|
II____‘:\;I_I‘___-——'__ o ___-___fll_-—-\_ )

o M G I b

—_—
=

ADON: isosceles right triangle = DON = 45°
AADC: isosceles right triangle = EE = 45°

—_—

ON, AC —straight line I_ = DON, DAC —corresponding angles

AD —secant line
= ON||AC = Using the Fundamental Theorem of Similarity: | ADON ~ ADAC =
AVON ~ AVCA =



n

AN
n+1

Al ==-AB=—-CD=DN }: AIND - parallelogram AN, DI - diagonals }=>
AB||CD = AI||DN AN N DI = (W}

= W - midpoint of AN = WN =% - AN = ”erl

- VN =>

_ _ _ n-1 _ L _n-1
=WV =WN — VN == VN}=> WV = AN - 5r=5

AN
n+1

VN =
AADN:right triangle=Using the Pythagorean Theorem:

2 2 2 2 112 (P41 I 2
AD* 4+ DN* = aN* =1 4 (&) = Hl s = Lo’ 4 15
=WV = l-gn—12-1[n2+1

2n-(n+1)
_ _ _ _ _ _ _ Ln=1n’+1
Analog UT = VU =TS = SR = RQ = QX = XW = ontD
AUVT:isosceles triangle(VU = UT) = AUVT ~ AUDC =
ADUC:isosceles triangle(DU = UC = % = %)
VC n DT = {U}= VUT = DUC
n—1
_ v _Ur _ VT a0 nt
:Kz_ Up — uc — ¢~ Lo  ntl
2
_ R e _ (-1
AVUT - ADUC Kz T 1)’ Apuc’VT T ot =
. DO l CD-UG r
U,G - midpoints of CD,CO0 = UG =—~=—-= ADUC ===
(1)
>4 =D
4% 4n-(n+1)2
AnalogforA =A =A = Lo’
RST RQX XWV " 4nnt1)’
Analog TR = RX = XV = -U=2 = VTRX > rhombus =

AUVT ~ AUDC = FV\T = @(internal alternate angles) = VT||CD} VT||TR
Analog TR||BC, BC L CD

- (n-1)°

(n+1)°

4 =1’ O N i ) SN o O S 2
octagon 4 AVUT + AVTRX T n(nt1) + 1)} w@td) T one(utl) ABCD(AABCD =1

= VTRX - square = A = (VT)2 =

VTRX

Generalization 3

Since the original problem on the square turned out to be true for any
parallelogram, the natural question at this point is to ask whether this latest result
generalizes to any parallelogram.



Al = Bl = CM = DN =

1

e
1

E

AP = DO = CL = BK =

~ = 5 = -~ =Using the Reciprocal of Thales’ Theorem: ON||AC =Using the

Fundamental Theorem of Similarity [ ADON ~ ADAC
AVON ~ AVCA =
DN DO ON

_ _ _ _ _ VN _ ON _ 1 _ 1
=k —W—E—F——andk v ___T:VA_T VN =

C_VA AC

AN

= AN =(n+1) - VN, VN ===

Al = % - AB = % CD = DN, Al||DN = AIDN —parallelogram }=>

AN, DI —diagonals and AN n DI = {W}

n+1 1 n—1

= W —midpoint of AN, DI = WN === =22 . YN = WV == VN =2+ - AW
n—1
In the same way, =i
WX wv n—1
DW = W = ) } = AADW ~ AVWXi
XWV = AWD (opposite angles at the apex)
WV _ wx _ VX _ n-1 — 2 R e SN
= k3 T AW T Dpw T AD T n+1 =>{ AAVWX - (k3) AAADW - (n+1) AAADW
VX =
VT = RX =2 4B.
AN n DI = {(W}= d(W, AD) = - - d(N, AD) =—-%- d(C, AD) =
2
= A :w: - AD - d(C, AD) =— - A = A =D 4
AADW 2 4n ABCD AVWX  an(n+1) ABCD
— — _ =)' —
Analog to AAXQR o AARST - AAVUT T an(ne1)’ AABCD - AA'

AADW ~ AVWX = XVW = WAD (alternate internal angles, AV —secant)=
= VX||AD. In the same way, we demonstrate VT||CD = ADC = XVT =
= sin(ADC) = sin(XVT).

VT = XR and VX = RT = VTRX —parallelogram= AVTRX =VT - VX - sin(TVX) =



_ (-1)°

VIRX ~ (n41)? ABCD’

2 2
=44 +4, =4.LA_ g0 L 0D, o
octagon A VTRX 4n(n+1) ABCD (n+1) ABCD
_ (=1
= Aoctagon T n(n+1) AABCD'
Observation: n-1 must be greater than 0 because VT = Z: - AB. As aresult, n

must be greater than 1. But what happens if n € (1,2)?

As n decreases between 2 and 1, we find that the pairs of segments like DI and CJ
cross and that the area of the octagon continues to shrink as n approaches 1. But
surprisingly, for both the square and the parallelogram, none of the ratios and areas
change from the solution to the problem. The “overlapping” does not affect the steps
in solving the problem.
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Generalization 4

When we first thought about how to solve this problem, we incorrectly believed that
the initial octagon was a regular octagon, when, in fact, it is not. Although the
octagon is equilateral, one can verify that the distances of points Q, S, U, W from the
center of the octagon are not equal to the distances of points R, T, V, X from the
center. So, we may reasonably ask under what conditions the octagon formed is
regular.

The octagon can be regular only in the case of the square but not for the general
parallelogram. From the symmetries of the square, we can establish without difficulty
that the octagon is equilateral and that the eight central angles with vertices at 'Y are

all 450; however, in general, QY = SY = UY = WY and RY = TY = VY = XY, but
the two sets of segments are not equal to each other. For the octagon to be regular,



all vertex-center distances must be equal, so we consider the case of WY = VY.

2 : : J o
Q
X R
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o p L
\ T
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D N G M

In AADN: H, W —midpoints of AD, AN = HW —-middle line=> HW = % = Z—In and
-1

L)

- _ L —
HY == =—=> WY =

Using these results: VT||CD and VT = Z: - CD that were already found in the
previous demonstrations, we have AYVT ~ AYDC, where k = ZE =
vy =2—.py = 2(’;:1) . BD =%- 1(2)
From (1), (2) and WY = VY = "2_711 = fz((n";f)) >n = ﬁ
A | E ) B 1

The desired points for which n = are

\2-1

found by bisecting the 45 degree angles

between the sides of the square and the
. diagonals.These lines can also be found by
) reflecting each of the triangles equivalent to
ADAI onto the diagonal, as illustrated.




