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Abstract

The aim of this article is an in-depth study of Lill’s method, an ingenious graphical
method of finding the roots of polynomials of any degree developed by Austrian engineer
Eduard Lill and published on the Nouvelles annales de mathématiques in 1867 where the
proof is left to the reader. Initially we analyze the original method to better understand
how it works and we produce some proofs about its fundamental properties and a cou-
ple of results: we recognize a nice connection with the well known Ruffini’s method for
factoring polynomials and we use its geometrical properties to represent particular alge-
braic numbers and to give an expression for the number π[1]. Finally we generalize the
method and by exploiting its properties we show how it allows to study the problem of
inscribing regular polygons inside other regular polygons.

???

1 Lill’s method and the factorisation

Introduction

The aim of this work is an in-depth study of Lill’s method, an ingenious graphical method of finding
the roots of polynomials of any degree developed by Austrian engineer Eduard Lill and published in
1867 in Nouvelles Annales de mathématiques, Résolution graphique des équations numériques de tous
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degrés à une seule inconnue, et description d’un instrument inventé dans ce but, (1867), where the
proof is left to the reader. Let’s see first how the method actually works.

1.1 Lill’s method

First of all we propose an example to help understand the method. Let’s consider the polynomial:

p(x) = x3 −2x2 +3x +2

We draw its path where the length of the segments correspond to the respective coefficients of the
polynomial 1,−2,3,2

In particular, after drawing the first segment rightwards, by convention, from the end of the first
segment another segment is drawn rightwards (relative to the direction established by the first seg-
ment) if the second coefficient has the same sign of the first one, leftwards if not.

The next segment is drawn rightwards if the third coefficient has the same sign of the second one,
leftwards if not, and so on.

Actually this rule is slightly different from the one used by Lill. In fact we have chosen to invert
the rotation of the segment with respect to Lill in order to have the positive roots above the starting
segment and the negative ones below it. This choice will become clearer in the following.

The next step is to find a root of the polynomial. Let’s now consider the following polynomial

p(x) = x3 +5x2 +7x +3

whose roots are −1, double, and −3, and its path is depicted in Fig. 1
To find the roots we have to find a path, starting from A, which reflects one time on each segment

(or on its own prolongation) with right angles and gets to the end of the last one.
For example, none of the paths presented in Fig. 2 is related to a root as it does not end at point E .
On the other hand, the two paths reported in Fig. 3 connect A with E therefore the length of the

segments BF and BG are the roots of the polynomial p(x) (as briefly explained above they have a
negative sign because they are positioned below the first segment AB)[2].
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Figure 1: Path built using the polynomial p(x) = x3 +5x2 +7x +3

Figure 2: Both the path that start from the point A are not related to a root of the polynomial since
they do not end on point E.

1.2 Factoring a polynomial with the Lill’s method

In this section we are going to prove we can use Lill’s method to factor a polynomial and that we will
obtain the same factorization as the one obtained applying Ruffini’s method. We know how to use the
Ruffini’s method to factor a polynomial, for example given

p(x) = x3 −4x2 +5x −2

we have to

• find a zero of p(x) due to the theorem of the rational zero of a polynomial: x0 = 1;

• find the quotient polynomial q(x) through the euclidean division: q(x) = x2 −3x +2;

• factor p(x) thanks to Ruffini’s theorem into (x −x0) ·q(x)

p(x) = (x −1)(x2 −3x +2)
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Figure 3: Two examples of path related to two roots of the polynomial p(x) = x3 +5x2 +7x +3

after, iterating the method, we find

p(x) = (x −1)(x −1)(x −2)

Now, before using Lill’s method, we have to state two theorems:

Theorem 1. Given the monic polynomial p(x) = x3 +bx2 + cx +d with b < 0, c > 0, d < 0 then

p(x) = (x − tanα) · (x2 + (b + tanα)x −d cotα)

where α is the angle between the first segment of the path of p(x) and the first segment of the solution
path.

Proof. Let’s draw the Lill’s path and the solution path of a polynomial p(x) are:
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Since α+α1 = 90◦ for the theorem of the sum of the internal angles of a triangle and α1 +β= 90◦

then α=β. The same thing can be proved for the angles β and γ.
Thanks to the definition of cosine and sine we know that:

• 1 = i ·cosα

• −b = i · sinα+ j ·cosα

• c = j · sinα+k ·cosα

• −d = k · sinα

And if we substitute these new values into the polynomial, we get:

p(x) = i ·cosα · x3 − (
i · sinα+ j ·cosα

)
x2 + (

j · sinα+k ·cosα
)

x −k · sinα

which is equal to:

i
(
x3 cosα−x2 sinα

)− j
(
x2 cosα−x · sinα

)+k (x ·cosα− sinα)

= i x2 (x ·cosα− sinα)− j x (x ·cosα− sinα)+k (x ·cosα− sinα)

= (x ·cosα− sinα)
(
i x2 − j x +k

)
For the definition of tangent, sinα= cosα · tanα.

Since tanα= x0

1
= x0 ⇒ sinα= cosα · x0, And if we substitute that to the previous polynomial,

(x ·cosα−x0 ·cosα)(i x2 − j x +k) = cosα(x −x0)(i x2 − j x +k)

Since i = 1

cosα
, j = −b − tanα

cosα
, k = −d

sinα
, the previous polynomial is equal to:

cosα(x − tanα)

(
1

cosα
x2 + b + tanα

cosα
x − d

sinα

)
So p(x) = (x − tanα) ·q(x), where

q(x) = cosα
(

1

cosα
x2 + b + tanα

cosα
x − d

sinα

)
= x2 + (b + tanα)x −d cotα

We can also see that
1

cosα
,

b + tanα

cosα
, − d

sinα
are the lengths of the segments of the solution path,

which becomes another polynomial path
1

cosα
x2 + b + tanα

cosα
x − d

sinα
rotated by the α angle.

Theorem 2. Given the monic polynomial p(x) = x2 −bx + c with b > 0, c < 0 then

p(x) = (x − tanα) · (x − c cotα)

where α is the angle between the first segment of the path of p(x) and the first segment of the solution
path.
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Proof. In a similar way to the previous theorem we draw

and we observe that:

• 1 = i ·cosα

• −b = i · sinα+ j ·cosα

• c = j · sinα

therefore

p(x) = i ·cosα · x2 − (
i · sinα+ j ·cosα

)
x + j · sinα

= (x ·cosα− sinα)
(
i x − j

)
= cosα(x −x0)(i x − j )

= cosα(x − tanα)

(
1

cosα
x − c

sinα

)
= (x − tanα)(x − c cotα)

We can also see that
1

cosα
, − c

sinα
are the lengths of the segments of the solution path, which

becomes another polynomial path
1

cosα
x − c

sinα
rotated by the α angle.

Now we can factor the polynomial p(x) = x3 −4x2 +5x −2 also with Lill’s method. First of all we
draw the path and a solution path obtained with α1 = 45◦:
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then we use the first theorem above and we get

p(x) =(x − tanα) · (x2 + (b + tanα)x −d cotα)

=
(
x − tan

π

4

)
·
(
x2 +

(
b + tan

π

4

)
x −d cot

π

4

)

= (x −1)(x2 −3x +2)

We observe that
1

cosα
x2 + b + tanα

cosα
x − d

sinα
=p

2x2 −3
p

2x +2
p

2

is a new path rotated by the α1 = 45◦ angle and dilated by
p

2.

Iterating the process by drawing the solution path related to the first solution path and thanks to
the second theorem above we get

x2 −3x +2 = (x − tanα2)(x − c cotα2) = (x −1)(x −2)

We observe that
1

cosα
x − c

sinα
=
p

2x −2
p

2

is a new path rotated by the α2 = 45◦ angle and dilated of
p

2.
By combining the two rotodilatations we get x −2 in fact

p(x) =
p

2

2
(x −1)(

p
2x2 −3

p
2x +2

p
2) =

p
2

2
(x −1)

p
2(x2 −3x +2)
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Figure 4: the external path represents the starting polynomial p(x) = x3 −4x2 +5x −2. Each internal
path instead is related to a factorization step that ends up beeing p(x) = (x −1)2(x −2)

we can factor it again into

p
2

2
(x −1)

p
2 ·

p
2

2
(x −1)(

p
2x −2

p
2) = (x −1)2(x −2)

in conclusion we got the same factorisation with both methods.

1.3 Lill’s method and the Pascal’s triangle

We can also consider the specific case of a polynomial p(x) which is the result of the power (x − a)n

with n ∈N, for example

(x −1)6 = x6 −6x5 +15x4 −20x3 +15x2 −6x +1

We can draw its polynomial path and then, inside, the solution path that is the lower power. If
we continue to draw the paths we will get the nice symmetrical construction of the following figure
in which the lengths of the segments of the paths are multiples of the coefficients of Pascal’s triangle
(known in Italy as Tartaglia’s triangle).
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As we have seen above
(x −1)6 = (x − tan45◦)q5(x)

where q5(x) = (x −1)5 and the path
q5(x)

cos45◦ =p
2(x −1)5

corresponds to the solution path of (x −1)6.

Subsequently
(x −1)5 = (x − tan45◦)q4(x)

where q4(x) = (x −1)4 and the path

q4(x)

cos45◦ ·cos45◦ = 2(x −1)4
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corresponds to the solution path of (x −1)5.

Subsequently
(x −1)4 = (x − tan45◦)q3(x)

where q34(x) = (x −1)3 and the path

q3(x)

cos45◦ ·cos45◦ ·cos45◦ = 2
p

2(x −1)3

corresponds to the solution path of (x −1)4.

In the same way we find out the solution path 4(x −1)2 and at the end 4
p

2(x −1).

2 Generalization

2.1 Definitions

Starting from the analysis of the method we are going to give some rigourous definitions. Then we are
going to state and prove the theorem that describe the reason why the method works that way.

Definition 1. Given a polynomial p(x) of degree n ∈N0

p(x) := an xn +an−1xn−1 + ...+a0

and an angle 0 <ϕ<π a Polynomial path Pϕ in the complex plane is defined by q(e iϕ) where:

q(x) := p(x)

an xn = 1+ an−1

an
x−1 + ...+ a1

an
x1−n + a0

an
x−n

In the following we will consider w.l.o.g. a monic p(x) (an = 1) and in this case its polynomial path
will be

q(e iϕ) = 1︸︷︷︸
v0

+an−1e−iϕ︸ ︷︷ ︸
v1

+an−2e−2iϕ︸ ︷︷ ︸
v2

+...+a1e(1−n)iϕ︸ ︷︷ ︸
vn−1

+a0e−niϕ︸ ︷︷ ︸
vn

Where each term has to be intended as a vector on the complex plane.

Example 1. Given the angle ϕ= π

2
and the polynomial p(x) = x3 −4x2 +5x2 −2.

Let’s draw its Polynomial Path P π
2

. First of all let’s calculate q(x):

q(x) = p(x)

x5 = 1−4x−1 +5x−2 −2x−3

then
q

(
e i π2

)
= 1︸︷︷︸

v0

−4e−
π
2 i︸ ︷︷ ︸

v1

+5e−πi︸ ︷︷ ︸
v2

−2e−
3
2πi︸ ︷︷ ︸

v3

= 1︸︷︷︸
v0

+4i︸︷︷︸
v1

−5︸︷︷︸
v2

−2i︸︷︷︸
v3
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Let’s now use a different angle such as ϕ= 2

3
π, then:

q
(
e i 2

3π
)
= 1︸︷︷︸

v0

−4e−
2
3πi︸ ︷︷ ︸

v1

+5e−
4
3πi︸ ︷︷ ︸

v2

−2e−2πi︸ ︷︷ ︸
v3

= 1︸︷︷︸
v0

+2
p

3i +2︸ ︷︷ ︸
v1

+5

2

p
3i − 5

2︸ ︷︷ ︸
v2

−2︸︷︷︸
v3

And its polynomial path P 2
3π

becomes:

Definition 2. Given a polynomial path Pϕ a Reflection path Rϕ is a set of consecutive line segments
that intersect one and only one time each segment of Pϕ or its prolongation with a reflection of angleϕ.

Here is an example:

MATh.en.JEANS 2021-2022 Liceo “M. Casagrande”, Pieve di Soligo, Treviso, Italy
Page 11

Liceo “M. Casagrande”, Pieve di Soligo, Treviso, Italy
Page 11



2.2 Theorems

Theorem 3. Given a polynomial path Pϕ, if the the last end-point of a reflection path Rϕ coincide with
the last end-point of Pϕ then the distance (or its opposite) from the second end-point of Pϕ to the second
end-point of Rϕ is a root of the polynomial p(x), and we call this Rϕ Solution Path Sϕ[3].

Proof. We are going to prove the theorem starting from the polynomials of degree 2: in this case we
would have 4 different polynomial path depending on the sign of b and c with a = 1. However we can
reduce them to two cases due to the symmetry with respect to the x-axis. Let’s consider a polynomial
path P π

2
of a polynomial of degree 2:

p(x) = ax2 +bx + c with a = 1, b < 0, c > 0
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Let’s BP = x1, PC =−b −x1, and C D = c.
Let’s consider the triangles (ABP ) and (DC P ), they have:�ABP ∼= �DC P ∼= π

2
for construction�DPC ∼= �PAB because they are

complementary to the same angle �APB

⇒ for the similarity criterion ⇒ triangle (ABP ) ∼ triangle (DC P )

PB

DC
= AB

PC
=⇒ x1

c
= 1

−b −x1
=⇒−(b +x1)x1 = c =⇒ x1

2 +bx1 + c = 0

Then x1 is a root of the polynomial p(x)
Let’s now consider the case b < 0 and c > 0, then P π

2
becomes:

Let’s BP =−x1, PC =−b −x1, and C D =−c.
Let’s consider the triangles (ABP ) and (DC P ), they have:

�ABP ∼= �DC P ∼= R̂ for construction�DPC ∼= �PAB because they are

complementary to the same angle �APB

 =⇒ for the similarity criterion

⇒ triangle (ABP ) ∼ triangle (DC P )

PB

DC
= AB

PC
=⇒−(b +x1)x1 = c =⇒ −x1

−c
= 1

−b −x1
=⇒ x2

1 +bx1 + c = 0

Then x1 is a root of the polynomial p(x)
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Let’s now consider a polynomial path P π
2

of a polynomial of degree 3, similarly to what we said
before we would have 8 different Polynomial path that we can reduce to 4 but due to the generality of
the reasoning we will use only one of them:

q(x) = ax3 +bx2 + cx +d with a = 1, b < 0, c > 0, d < 0

Let’s BP = x1, PC =−b −x1, C D = c, DE =−d
Let’s consider the triangles (ABP ) and (QC P ), they have:�ABP ∼= �QC P ∼= R̂ for construction�QPC ∼= �PAB because they are

complementary to the same angle �APB

 =⇒ for the similarity criterion

⇒ triangle (ABP ) ∼ triangle (QC P )

So
PB

QC
= AB

PC
=⇒ x1

QC
= 1

−b −x1
=⇒QC =−x1(x1 +b)

Then DQ = c +x1(x1 +b)
Let’s consider the triangles (QDE) and (QC P ), they have:�QDE ∼= �QC P ∼= R̂ for construction�QPC ∼= �EQD because they are

complementary to the same angle �CQP

 =⇒ for the first similarity criterion

⇒ triangle (QDE) ∼ triangle (QC P )

So
PC

DQ
= CQ

DE
=⇒

−b −x1

c +x1(x1 +b)
= −x1(x1 +b)

−d
=⇒ d(b +x1) =−x1(b +x1)(c +x1(x1 +b)) =⇒

d =−x1c −x2
1(x1 +b) =⇒ x3

1 +bx2
1 + cx1 +d = 0

Then x1 is a root of the polynomial p(x)
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Let’s consider a polynomial path Pϕ of a polynomial of degree 2 with concordant roots :

p(x) = ax2 +bx + c with a = 1, b < 0, c > 0

Let’s BP = x1, PC =−b −x1, and C D = c.
Let’s consider the triangles (ABP ) and (DC P ), they have:

�ABP ∼= �DC P for construction�DPC ∼= �PAB because of the

sum of the internal angles of triangle

 =⇒ for the first similarity criterion

⇒ triangle (ABP ) ∼ triangle (DC P )

PB

DC
= AB

PC
=⇒ x1

c
= 1

−b −x1
=⇒−(b +x1)x1 = c =⇒ x2

1 +bx1 + c = 0

Then x1 is a root of the polynomial p(x)

We can also use the tangent of the angle α between the x-axis and the first segment of the Reflec-
tion Path to prove this theorem:

Proof. Given a P π
2

of a polynomial

p(x) = ax2 +bx + c with a = 1, b < 0, c > 0
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Set the cartesian plane on the first vertex of P π
2

with the first segment on the x-axis and the second
segment on the y-axis. Let P be a point on the second segment of P π

2
of p(x). The straight line r AP

passing through A and P form an angle α with the x-axis, being AB = 1 due to the definition of Poly-
nomial Path the equation of r AP is:

r AP : y = tanαx + tanα

In order to draw the second segment of R π
2

of p(x) let’s find the straight line perpendicular to r AP :

mr⊥ =− 1

mr AP

=− 1

tanα

r⊥ : y =− 1

tanα
x + tanα

Let Q be r⊥∩ rDC with rDC : y =−b y =−b

y =− 1

tanα
x + tanα

=⇒− 1

tanα
x + tanα=−b ⇒ xQ = tanα(tanα+b)

tan2α+b tanα−xQ = 0

tanα=
−b ±

√
b2 +4xQ

2

Being a = 1 p(x) roots are:

x1,2 = −b ±
p

b2 −4c

2

So tanα is a root of p(x) only for xQ =−c and that is true only when Q ≡ D . That said if Q ≡ D so the
free end-points of P π

2
and R π

2
coincide then tanα is a root of the polynomial p(x).
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3 Polygons and Polynomial Paths

We are now going to study the relationship between the Polynomial Path, and therefore the polyno-
mials, and the regular polygons. Then we are going to analyse the regular polygons inscribable in
other regular polygons.

3.1 Definitions

Definition 3. The regular m-agon can be obtained as the Polynomial Path with angle ϕm = m−2
m π

(amplitude of the internal angle) and

pm(x) := xm − (−1)m

x +1
=

m∑
j=1

(−1)( j+1)xm− j = xm−1 −xm−2 +xm−3 − ...

and

qm(x) = pm(x)

xm−1 =
m∑

j=1
(−1)( j+1)x1− j =

m−1∑
l=0

(
−1

x

)l

wi th l = j −1 (1)

Example 2. Given m = 6, then

p6(x) := x6 −1

x +1
= x5 −x4 +x3 −x2 +x −1 ϕ6 = 6−2

6
π= 2

3
π

q6(x) = 1−x−1 +x−2 −x−3 +x−4 −x−5

its evaluation in e i 2
3π:

q6(e i 2
3π) = 1−e−i 2

3π+e−i 4
3π−e−i 2π+e−i 8

3π−e−i 8
3π

and the consequent Polynomial Path is:

3.2 Theorems

Theorem 4. The Polynomial Path given by qm(e iϕm ) is closed.

Proof. Since qm(e iϕm ) results in the sum of the unit complex roots its value is always zero therefore
the consequent polynomial path is always close.

Theorem 5. The regular m-agon can be obtained as the Polynomial Path with angle ϕm·k = mk −2

mk
π

and the polynomial:

p ′
m(x) := pm·k (x)

pk (x)

So we will use the notation: (
pm(x);ϕm

)∼= (
p ′

m(x);ϕm·k
)
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Figure 5: Polynomial Path of p6(x)

Proof.

p ′
m(x) := pm·k (x)

pk (x)
=

xmk − (−1)mk

x +1
xk − (−1)k

x +1

= xmk − (−1)mk

xk − (−1)k
=

=


x(m−1)k −x(m−2)k + ... =

m∑
i=1

(−1)i+1x(m−i )k , k odd ∈N0

x(m−1)k +x(m−2)k + ... =
m∑

i=1
x(m−i )k , k even ∈N0

(2)

Then

q ′
m(x) = p ′

m(x)

x(m−1)k
=

=



∑m
i=1(−1)i+1x(m−1)k

x(m−i )k
=

m∑
i=1

(−1)i+1xk(1−i ) =
m−1∑
l=0

(
− 1

xk

)l

(wi th l = i −1) , k odd ∈N0∑m
i=1 x(m−i )k

x(m−1)k
=

m∑
i=1

x(1−i )k =
m−1∑
l=0

(
1

xk

)l

(wi th l = i −1) , k even ∈N0

From the equation 1 in the definition 3 we have that

qm(x) =
m−1∑
l=0

(
−1

x

)l

let’s now analyse both the cases with k ∈N0 odd or even:

• If k is odd

q ′(e iϕmk ) =
m−1∑
l=0

(
− 1

(e iϕmk )k

)l

and q(e iϕm ) =
m−1∑
l=0

(
− 1

e iϕm

)l
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So, in order to have the same polynomial path:

− 1

(e iϕmk )k
=− 1

e iϕm

⇒ ekiϕmk = e iϕm

⇒ k
mk −2

mk
π= m −2

m
π+2λπ (λ ∈Z)

⇒ kπ− 2

m
π=π− 2

m
π+2λπ

⇒ kπ=π+2λπ

Being k odd this equation is verified for each value of k

• If k is even:

q ′(e iϕmk ) =
m−1∑
l=0

(
1

(e iϕmk )k

)l

and q(e iϕm ) =
m−1∑
l=0

(
− 1

e iϕm

)l

So, in order to have the same polynomial path:

1

(e iϕmk )k
=− 1

e iϕm

⇒ ekiϕmk =−e iϕm

⇒ ekiϕmk = e iπe iϕm

⇒ k
mk −2

mk
π=π+ m −2

m
π+2λπ (λ ∈Z)

⇒ kπ− 2

m
π= 2π− 2

m
π+2λπ

⇒ kπ= 2π+λπ
Being k even this equation is verified for each value of k

3.3 Inscribed polygons

We noticed that there is a relationship between the factorisation of the polynomial and the polygons
inscribable inside the initial Polynomial Path. Let’s look at an example:

Example 3. Let’s consider the polynomial that generates a regular dodecagon:

p12(x) = x12 −1

x +1
= x11 −x10 +x9 −x8 +x7 −x6 +x5 −x4 +x3 −x2 +x −1 ϕ12 = 5

6
π

and its factorisation in the Real numbers:

p12(x) = (x −1)(x2 −x +1)(x2 +1)(x2 +x +1)(x4 −x2 +1)
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Figure 6: Polynomial Path of p12(x)

Figure 7: Hexagon inscribed in a dodecagon
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Figure 8: Square inscribed in a dodecagon

Factorising out for x −1:

p12(x) = (x −1)︸ ︷︷ ︸
number o f vector s to sum

· (x10 +x8 +x6 +x4 +x2 +1)︸ ︷︷ ︸
p ′

6(x) wi th k=2

We obtain the polynomial that results to be p ′
6(x) wi th k = 2 Likewise we can obtain a square:

p12(x) = (x2 −x +1)︸ ︷︷ ︸
number o f vector s to sum

· (x9 −x6 +x3 −1)︸ ︷︷ ︸
p ′

4(x) wi th k=3

and a triangle:
p12(x) = (x3 −x2 +x −1)︸ ︷︷ ︸

number o f vector s to sum

· (x8 +x4 +1)︸ ︷︷ ︸
p ′

3(x) wi th k=4

4 A well known theorem

In this chapter, using Lill’s method, we are going to give an interpretation of the role of the discrimi-
nant (∆= b2 −4ac) of a quadratic equation.

First of all we state the well know theorem:

Theorem 6. Given a quadratic equation ax2 +bx + c = 0 whit a,b,c real numbers and a 6= 0:

• The equation has two coincident real solutions (double solutions) iff the discriminant is zero.

• The equation has two distinct real solutions iff the discriminant is positive.

• The equation has no real solutions iff the discriminant is negative.
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Figure 9: triangle inscribred in a dodecagon

[4]

Proof. We want to prove that if the equation has two coincident real solutions (or two or none) then
the discriminant is zero (or positive or negative).

Let’s consider, without loss of generality, a monic polynomial p(x) = x2 +bx + c with b > 0, c > 1.
Drawing the polynomial path ABC D of p(x), the segment AD and the semicircumference with

diameter AD , we get the trapezoid ABC D and three different situations:

The geometrical construction in the first figure is related to the case in which the quadratic equa-
tion has one solution (double); in the central figure the quadratic equation has two different solutions;
in the figure on the right the quadratic equation has zero solutions.

In all the three cases we can calculate the length of the segments EF and E Z parallel to the seg-
ments AB and C D joining the points E and Z respectively the middle point of AD and the middle
point of BC .
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The intersection between the segment BC and the semicircumference represents the solution of
the quadratic equation.

Starting from the analysis of the first figure, thanks to the Thales’s theorem (also know as the
intercept theorem) we can say that

E Z = AB +DC

2
= a + c

2

.
We can see that the segment EF is equal to the segment AD

2 .

If we consider Z and F coincident, as in the figure 1, we can say that EF = E Z , and therefore

AB +C D

2
= AD

2
⇒ AB +C D = AD

.
Let’s focus on the right triangle ADL.

According to Pythagorean theorem

D A
2 =C B

2 + (DC − AB)2

.
Since AB +DC = AD we get

(AB +DC )2 =C B
2 + (DC − AB)2

.
Solving the equation we get C B

2 −4(AB)(DC ) = 0
We know that AB corresponds to a, BC corresponds to b and C D corresponds to c thus giving

b2 −4ac = 0 meaning that the discriminant is zero.

In the same way we can prove that if we consider F and Z like two non-correspondent points, if
E Z is less than EF , as in the figure 2, then we have b2 −4ac > 0 and if E Z is greater that EF , as in the
figure 3, then we have b2 −4ac < 0.

Now, we are going to propose a different proof of the same theorem, in the case of one solution,
using the equidecomposability.
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Proof. We consider an equation ax2 +bx + c = 0 with only one solution. We are going to prove that
the discriminant is zero.

The polynomial path is

We build the square B N I M with side
b

2
and the rectangle BFGE with base c and height a:

To draw the rectangle we have to, for first, transfer AB on B M obtaining BE = a. To transfer
DC = c on the x axis we have to extend DM until x axis making the triangle B MF .

The triangle DMC is congruent to the triangle B MF because:

• C M ∼= B M

• DM̂C ∼= B M̂F opposite at the vertex

• DĈ M ∼= MB̂F right angles

So DC = BF = c
Now we are going to prove that the square B N I M is equivalent to the rectangle BFGE due to their

equidecomposability.
First of all we say that AB M ∼= M I H because:

• B M ∼= M I

• AB̂ M ∼= M Î H (right angles)

• AM̂B ∼= H M̂ I because they are both complementary to the angle B M̂ H .
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So AB = I H = a.
Also M I H ∼= JGF because:

• GF = I H = a

• H M̂ I ∼= F ĴG (M I and GE are parallel)

• JĜF ∼= H Î M (right angles)

Also H N F ∼= ME J because:

• N ĤF ∼= E M̂ J (because MB and N I are parallel)

• ME ∼= N H (differences of congruent sides)

• E Ĵ M ∼= N F̂ H (because EG e BF are parallel)

So for the theorem of equidecomposability MEK H and N K JF are equivalent having HK J in com-
mon.
Also MB N H and EBF J are equivalent having BEK N in common.
At the end B M I N and BEFG are equivalent because M I H and FGL are congruent so equivalent.

The are of B M I N is

(
b

2

)2

and the area of BEFG is ac then(
b

2

)2

= ac

that is the discriminant is zero.

5 Geometrical constructions

In this section[5] we are going to analyse some geometrical applications of Lill’s method.

5.1 Algebraic numbers

In this subsection we will deal with the algebraic numbers.

Definition 4. An algebraic number is a real number for which exists a polynomial equation with inte-
ger coefficients such that the real number is a solution.

Our goal consists to draw a segment who measure is an algebraic number.

Example 4. Let’s analyse the algebraic number 3
p

2 from Delian problem.
First of all we find the polynomial equation x3 −2 = 0 whose solution is the algebraic number, and,

consequently, the polynomial p(x) = x3 −2.
Then we draw its polynomial path Extending the segment BC and drawing the solution path ADEC

(dashed in the figure) we obtain the segment BD whose length is the algebraic number 3
p

2.

Example 5. The same reasoning can be applied when the length of the segment that we have to find is

the golden ratio
1+p

5

2
.

First of all we find the polynomial equation x2 − x −1 = 0 whose solution is the algebraic number,
and, consequently, the polynomial p(x) = x2 −x −1.

Then we draw its polynomial path
Extending the segment BC and drawing the solution path AED (dashed in the figure) we obtain

the segment BE whose length is the algebraic number
1+p

5

2
.
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5.2 Angles

In this section we will deal with angles which are the sum of arctangents. Our goal consists to draw
an angle whose measure is the sum of, in the first case, two arctangents and then, in the second one,
three arctangents.

First case.
Let’s consider first the goal to draw an angle whose measure is arctan(x0)+arctan(x1) with x0 and

x1 real positive numbers.
First we consider the polynomial p(x) = (x − x0)(x − x1) = x2 − (x0 + x1)x + x0x1, whose solutions

are x0 and x1. Then we draw its polynomial path:
the angle D ÂB measure arctan(x0)+arctan(x1).

Let’s prove this construction.
We suppose that x0 and x1 are positive so in the polynomial path a = 1, b < 0 and c > 0.
We observe that EB = x0 and C E = x1.
Linking A and D we get the segment D A and the angle D ÂB .
The measure of the angle corresponds to the sum of the angles B ÂE plus E ÂD . Considering the

right triangle ABE we can say that tan(α) = EB = x0 so α= arctan(x0).

Now, looking at the right triangle AED we can say that tan(β) = ED

AE
= j

i
.
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But, since i = x0

sinα
and j = x0x1

sinα
, we find that tan(β) = x1 therefore β= arctan(x1)

Now we can conclude that

D ÂB =α+β= arctan(x0)+arctan(x1)

Example 6. We want to draw and angle whose measure is given by the sum of ar ct an(1)+ar ct an(2).
First we consider the polynomial p(x) = (x −1)(x −2) = x2 −3x +2, then we draw its polynomial

path ABC D with AB = 1, BC = 3 and C D = 2.
The angle D ÂB measure arctan(1)+arctan(2).

Second case.
Let’s consider now the goal to draw an angle whose measure is arctan(x0)+arctan(x1)+arctan(x2)

with x0, x1 and x2 real positive numbers.
Let’s consider the polynomial p(x) = x3 − (x0 + x1 + x2)x2 + (x0x1 + x0x2 + x1x2)x − x0x1x2 and its

polynomial path, as in the image below:

We call δ the angle E ÂH ,β the angle L ÂF and θ the angle E ÂF . Considering the right triangle LC F

we note that LF = x0(x1 +x2)

sinα
. Considering the right triangle EDL we note that x0x1x2 = E H sinα+

HL sinα= E H sinα+x0 so E H = x0(x1x2 −1)

sinα
. Considering the right triangle E H A we note that

tanδ= E H

LF
= x1x2 −1

x1 +x2

Now

MATh.en.JEANS 2021-2022 Liceo “M. Casagrande”, Pieve di Soligo, Treviso, Italy
Page 28

Liceo “M. Casagrande”, Pieve di Soligo, Treviso, Italy
Page 28



tanθ = tan
(
δ+ π

2

)
=−cotδ= x1 +x2

1−x1x2

so

θ = arctan
x1 +x2

1−x1x2
= arctan x1 +arctan x2

We know that α= arctan x0 therefore

E ÂB =α+θ = arctan x0 +arctan x1 +arctan x2

Example 7. An interesting example of this construction is when x0 = 1, x1 = 2 and x2 = 3. In fact the
polynomial becomes p(x) = x3 −6x2 +11x −6 and the polynomial path

and we can see that the measure of the angle E ÂB is arctan(1)+arctan(2)+arctan(3) =π.

[6]
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Edition notes

[1] This approximation of π is not done in this paper.

[2] When plotting associated polygons, the dominant coefficient is used as the unit. For unitary
polynomials (which is the case of those treated in the article) this is not a problem. On the other
hand, following the method of the article for 4x2 −12x +9 it does not work. This poses a problem
in particular in understanding the proof on page 24. It is mentioned that the proof will be given for
all polynomials, this is only the case for those of degree 2 or 3.

[3] Theorem 3 (Lill’s result) is stated in a very formal framework (any degree and polygon associated
to a polynomial for any angle measure). In the proof there is only mention of degree 2 with any
angle measure and degree 3 for an angle measure of π/2.

[4] The proof of Theorem 6 is done only for polynomials of the form x2+bx+c with b > 0 and c > 1
mentioning that it can be done without loss of generality. This deserves some explanation.

[5] In section 5 Lill’s method is applied to construct segments of irrational length. The problem is
that one has to succeed in tracing the path of the solutions to get there. This can be done approxi-
mately using geogebra software but absolutely not by hand.

[6] The article uses mathematics of a good terminal level following expert math. The results shown
are interesting.
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