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ABSTRACT 

 
Inspired by the Game of Life, created by John Horton Conway, we try to find 

visually and mathematically interesting patterns formed by using different types of tiles 
and sets of rules. Not only do we deeply dive into understanding the figures that appear 
when the tiles have a hexagonal or a triangular shape better, but we also focus on the 
1D case, which gives rise to fractal patterns and the Sierpinski triangle. Using the 
opportunity of creating our own rules of the Game and utilizing a computer program, 
we managed to find out how interesting patterns behave on different types of tiles: some 
patterns are static, some are oscillatory and some of them even glide. 

 
1. INTRODUCTION 

 
The mathematician John Horton Conway proposed the following game in 1970, 

called the Game of Life: Consider an infinite grid of squares, which we call cells. Each 
cell can be in one of two states: alive or dead. Every cell has 8 neighbours, which are 
the squares with which it shares at least a side or a vertex. Every second, the following 
happen to all cells: 

• Any living cell with fewer than two living neighbours dies, as if by 
underpopulation. 

• Any living cell with two or three living neighbours lives on to the next 
generation. 

• Any living cell with more than three living neighbours dies, as if by 
overpopulation. 
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•  Any dead cell with exactly three living neighbours becomes a living cell, as if 
by reproduction. 

Depending on the initial distribution of living cells, different interesting patterns 
emerge: 

• Some patterns are stable, meaning they do not change at all e.g. a 2x2 block of 
cells. 

• Some patterns oscillate, meaning that after a certain period of time they return 
to the original pattern and repeat e.g. a 1x3 block of cells, which repeats with period 2. 

• Some patterns called spaceships glide across the plane, meaning that after a 
certain period of time the same pattern reappears but at a different position in the plane. 

The choice of a square grid of cells is arbitrary. Different tilings of the plane 
could be used such as a triangular tiling, hexagonal tiling, etc. The students’ research 
question would be to devise new rules for a Game of Life on different types of tilings 
and explore what patterns emerge. 

 
We begin our search for answers in section 2, in which we explain in a more 

detailed manner what rules, cells and tilings represent. Then, in section 3, we start to 
deeply analyse each type of tiling we find interesting, putting emphasis on captivating 
mathematical methods as well as giving examples of some beautiful patterns that we 
were able to create. In section 3.1 we tackle the subject of a hexagonal grid, using and 
modifying the computer program that we found, which led us to exploring the vast 
possibilities that appear in this context. After that, in section 3.2, we focus on better 
understanding and discovering interesting patterns that occur when the tiles have a 
triangular shape. Even though, as cells, triangles have more neighbours than squares or 
hexagons, it was a pleasure for us to examine and discover rules that lead to unique 
patterns. In the last part of our presentation, section 3.3, we dive into the case in which 
Game of Life functions in just one dimension (1D), following with a thorough 
explanation of the Sierpinski Triangle. 
 
2. TILINGS AND RULES 
 

The Game of Life consists of a grid made out of cells that are in one of two 
states, either alive or dead. The way it is determined if a cell becomes alive or dead 
depends on the initial configuration that the user himself sets and the rule he chooses. 

A rule is an algorithm that determines the change in the state of the cell (spawns, 
survives, remains dead, dies) based on the number of living neighbours that the cell has. 

In table 1, we shall explain the mechanism behind the basic rule for squares: a 
living cell survives if it has either 2 or 3 living neighbours, while a dead cell is born 
only if it has exactly 3 living neighbours, otherwise nothing changes. 

The geometrical shape of each cell can vary, influencing its number of 
neighbours. Therefore, the Game of Life behaves differently on different tilings of the 
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plane. The only restrictions are that there must be no gaps on the ‘board’. Knowing 
these concepts, we can easily distinguish 2 types of tilings: regular and irregular ones. 

 
 

For a living cell For a dead cell 
# living neighbours Resulting state # living neighbours Resulting state 
0 Dead 0 Dead 
1 Dead 1 Dead 
2 Alive 2 Dead 
3 Alive 3 Alive 
4 Dead 4 Dead 
5 Dead 5 Dead 
6 Dead 6 Dead 
7 Dead 7 Dead 
8 Dead 8 Dead 

Table 1 Cell state variation in the original Game of Life 

A regular tiling is only made out of the same regular shape having the same size 
across the board, while an irregular tiling contains 2 or more geometrical shapes or the 
same shape with different sizes. The next example in figure 1 is of a famous irregular 
tiling, the Penrose tiling. 

Figure 1 The Penrose Tiling1 

One of our first tasks was to get familiar with the different geometrical shapes 
that a regular tiling can have. As we shall prove below, there are only 3 possible regular 
tilings of the plane. 

                                        
1 The Penrose Tiling, https://en.wikipedia.org/wiki/Penrose_tiling  

https://en.wikipedia.org/wiki/Penrose_tiling
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The first one is the square, which is the most popular and researched one, thus 
also being the one which gave us the least things to discover. As you can see, the square 
has 8 neighbours and its arrangement on the 'board' is the simplest out of the other 
shapes.   

 
Figure 2 A square and its neighbours 

The second one is the hexagon. It is the one with the least neighbours, 6, and 
also not nearly as researched as the square, which makes it a great candidate for our 

experiments. 
Figure 3 A hexagon and its neighbours 

The third one is the triangle, which has the most neighbours, 12, so it's the most 
complex, leading to very chaotic configurations and motion. 
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Figure 4 A triangle and its neighbours 

We now prove that these are all of the possible regular polygons that can fill our 
‘board’ without gaps. 

 Proof. Each angle of a regular n-gon has ( 2) 180n
n

− ⋅ 

 degrees, by the well-known 

formula. Let’s assume that at each vertex, k n-gons meet (this number must be constant 

since the n-gons are regular). Then, the value of k is 360 2
( 2) 180 2

n
n n

n

=
− ⋅ −





 , which must 

be an integer. We get that n-2 divides 2n. Since we know it divides 2n-4, we get that it 
is a divisor of 4, which can be either 1, 2, or 4. Therefore, n can only have one of the 
values 3, 4 or 6.  
 
3. DISCUSSION OF DIFFERENT RULES ON DIFFERENT TILINGS 

3.1. Game of Life on hexagons 
We begin our discussion of the behaviour of various rules on different tilings 

with the hexagonal tiling. 
Given the fact that working with hexagons on paper is not the easiest of tasks, 

we have immediately tried to find a solution to switch our work to a computer, where 
we can save time and effort. After a bit of research, we have managed to find the 
site https://arunarjunakani.github.io/HexagonalGameOfLife/. 

We really have to give a lot of credit to this site as it made our work much more 
precise and faster. With just a simple click of a button, we could analyse an entire case. 

https://arunarjunakani.github.io/HexagonalGameOfLife/
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Then, we realized that the site only offered us one rule to work with, which was 
obviously too little for us. So, our next dilemma was how to change the rules from the 
site, as it was clear that trying to make a similar site would be quite impossible with our 
coding knowledge. 

Even though it took quite a while to work out how to do it, once we mastered 
that, it became a piece of cake to change to other rules. Our procedure was the 
following: 

After downloading the code, we would open the file that allows us to change the 
rules. This file is separated from the animations, so it is really accessible to alter it. The 
complexity of the code helps us switch to different rules within seconds, as we need to 
change just some numbers and not the whole structure. For example, we present in 
figure 5 the change in the code from the rule on the site to the rule Survive 3, 4 - Spawn 
2, 3. We have used here concise notation to describe rules, which is explained below. 

An interesting initial question was to count the total number of possible rules on 
the hexagonal tiling, to see whether we had any chance to analyse them all. In order to 
do this, we have used the fact there exists a bijection between each possible rule for 
how many neighbours a cell needs to survive and each subset of the set {0, 1, 2,…,6}. If 
a number is in the subset, then a cell with that exact number of living neighbours 
survives. For any other number of neighbours, it dies. Similarly goes for the number of 
rules that dictate whether a dead cell comes to life. Therefore, for each part, there are 27 

if(living < 3 || living > 4) { 

this.shouldSwap = true; 

} 

else { 

if (living == 3 || living == 2) { 

        this.shouldSwap = true; 

} 

} 

Figure 5 Change in the code for hexagons 

if(living < 2 || living > 2) { 

this.shouldSwap = true; 

} 

else { 

if (living == 2) { 

        this.shouldSwap = true; 

} 

} 
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possible choices. In total, the hexagonal Game of Life can have one of 214 = 16384 rules 
- too many to analyse them all.  

We can now discuss complementary rules. For a subset A of a set M, let the 
complementary of A be 𝐴𝐴′ be the subset 𝑀𝑀 ∖ 𝐴𝐴. For a rule R1 Spawn A, Survive B, let 
the rule Spawn 𝐵𝐵′, Survive 𝐴𝐴′ be called the complement of R1. These rules have the 
property that they generate identical behaviours if they are applied to complementary 
colourings of the tiling (each dead cell becomes alive, and each living cell becomes 
dead). The only rules that do not have a complement are the ones for which 𝐴𝐴′ = 𝐵𝐵, as 
they become equivalent. For each subset A there is exactly one rule identical with its 
complement with Spawn A. Therefore, the number of rules identical to their 
complement is equal to the number of subsets of {0, 1, 2, …, 6} and is equal to 27. 

Therefore, there are only
14 7

7 13 6 72 2 2 2 2 2 8256
2
−

+ = − + =  if we consider 

complementary rules to be in fact equal.  
Furthermore, we consider that, by Conway’s original motivation for the game, a 

rule only makes sense if both the subset that determines the Spawn and Survive rules 
are continuous i.e. if a < b < c and a and c are in the subset then b must be in the 
subset. The number of continuous 1-element subsets of {0, 1, 2, …, 6} is 7. Similarly, 
there are 6 2-element continuous subsets, 5 3-element subsets and, so on, 1 7-element 

subset. The total is 7 81 2 ... 7 28
2
⋅

+ + + = =   In total, there are 282 = 784 continuous 

rules, which is a significant reduction, but still too many to analyse. 
Now we are going to move on to the proper analysis of two specific rules, which 

we have picked since they exhibit different behaviours. 
Our first idea for characterising the behaviour of different rules was to make a 

list of the simple shapes, made up by either 1, 2, 3, or 4 connected hexagons and 
analyse their behaviour. If a majority of these shapes had similar behaviour, then we 
could infer that the rule had a tendency to generate that type of behaviour e.g. periodic 
or stable shapes. 

These simple shapes are called monominoes, dominoes, triominoes and 
tetrominoes. Together, we will refer to them as polyominoes. We have listed them 
below: 

 

1.  2.  3.  4.   5.  

6.  7.  8.  9.  10.  
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11.  12.  
Figure 6 The simple hexagonal shapes 

  The shapes above are all such simple shapes up to reflections and rotations. 
During our work we have used the fact that neither reflections nor rotations influence 
the behaviour of the shapes because the rules only depend on the immediate neighbours, 
not the orientation of the pattern. Symmetric configurations can lead to aesthetically 
pleasing or harmonious patterns, but the fundamental dynamics are still determined by 
the local interactions of cells in the grid. 

Another way of characterising the behaviour of a rule is by generating random 
initial shapes, letting the game run, and observing what patterns emerge. On the site 
there is a button that gives all cells one of the two states with a certain probability. 
Playing the Game of Life, with time, shapes initially formed either disappear, stabilize 
or become periodical, thus showing the trend of the rule. For example, if a rule has 
many periodical shapes, we shall call it a periodical rule. 

The first rule that we analysed states that:  
 For a cell to be spawned, it needs to have exactly three living neighbours; 
 For a living cell to stay alive, it needs to have two or three living 

neighbours. 

It is important to be stated that most of the shapes with interesting properties that 
we found for this rule are stable and only a small part of them are periodic. We have 
found around 40 different shapes with interesting properties and at least 30 of them are 
stable. Thus, this first rule can be considered a stable rule. Using the randomisation 
technique explained above also confirms this behaviour. 

However, this is not reflected by the polyominoes above. The only ones with 
interesting properties are numbers 2 and 4 from figure 6, which are both 2-step periodic. 

Figure 7 presents some of the most interesting configurations we discovered. It 
particularly highlights how one can easily find large stable configurations for this rule.  

Figure 7 Stable shapes in hexagonal rule 1 
 

The second rule that we analysed states that: 
 For a cell to be spawned, it needs to have two or three living neighbours; 
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 For a living cell to stay alive, it needs to have three or four living 
neighbours. 

Contrary to the first rule, most of the shapes that we found are periodic and only 
a few of them are stable. This is again confirmed by the randomisation technique. Thus, 
this rule can be considered a periodic.  

This is also reflected amongst the polyominoes, as number 3 from figure 6 is 4-
step periodic, while numbers 2, 4 and 10 are all 2-step periodic.  

Below we highlight some interesting periodic configurations. The highest period 
that we have found for a shape is 16 for the following initial configuration: 

 
Figure 8 The initial configuration of a 16-step periodic shape 

 

 
 

 
Thus, these two rules which we have discussed are a great example of how 

different rules can make it harder or easier to find shapes with certain behaviour. 
 

Figure 9 A 5-step periodic shape in hexagonal rule 2 

Figure 10 A 2-step periodic shape in hexagonal rule 2 

Figure 11 A 2-step periodic shape in hexagonal rule 2 
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3.2. Game of Life on triangles 
The original Game of Life is played on a tiling of the plane using squares and 

has been studied by many. After having analysed the Game of Life on a hexagonal tile 
of the plane, we shall now move on to the only regular tiling left, as we have already 
proved, the one using equilateral triangles. 

On such a tiling, each cell has 3 neighbours that share a side (the blue ones in 
figure 12) and 9 that share a vertex (the red ones in figure 12). Because in Conway’s 
original game, a neighbour was a cell sharing either a side or a vertex, we shall consider 
each triangle has exactly 12 neighbours. Having so many neighbours, especially 
compared to the hexagons, this suggests that the Game of Life is much more vivid on a 
triangular tiling if an appropriate set of rules is chosen. But how many possible rules are 
there? This is the following part of our analysis.  

Figure 12 The neighbours in a triangular tiling 

In what regards the number of possible rules, we will use a method analogous to 
the one used for hexagons. We do similar calculations, but the set used is {0, 1, 2, …, 
12}. We easily get that there are 226 rules, out of which 213 are identical to their 

complement. The final result is 
26 13

13 25 12 132 2 2 2 2 2 33,558,528
2
−

+ = − + = . 

For counting continuous rules, we proceed just like we did for hexagons. The 

number of continuous subsets is 13 14 91
2
⋅

=  , and the resulting total of continuous rules 

is 291 8281=  
We started out our analysis, just like we did for the hexagonal Game of Life, 

discovering the basic shapes, namely the connected monomio, dominoes and 
triominoes, which we shall present in the following figure.  
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Figure 13 Simple shapes on a triangular tiling 

From here, we can see that in a triangular tiling of the plane, there is one 
possible monomio, 3 possible dominoes, and 11 possible triominoes. We have ignored 
the shapes that can be obtained from the ones in the figure by either reflections, 
rotations or both, because they will obviously generate similar behaviours, only with a 
different orientation. 

We have quickly realized that analysing multiple rules manually, on paper, 
would take a very long time and would imply a great risk of making mistakes. So, it 
was not feasible. Therefore, we started looking for a code similar to the one used for 
hexagons. We have come across a YouTube video 2  presenting some gliders in 
“Triangular Conway’s Game of Life”, as the video was called. Checking the comments, 
we discovered someone with our exact question: is there a code for it we can use? 
Gladly, the answer was yes. 

The writer of the code, Chase Marangu, had made an editable version 3 on 
openprocessing.org. The code made our work much easier and we have to give credit to 
the writer. With the aid of the code, we could now analyse different shapes very 
quickly. We used the same rule as the writer himself: a living cell only survives if it has 
either 4, 5 or 6 neighbours, while a dead cell is born when it has either 4 or 8 living 
neighbours.  

After checking the 15 shapes in Figure 13, we discovered they all “die” after 
just a few steps (no living cells are left).  

In our search of shapes that are either stable, periodic or gliding, we have used a 
very important characteristic of all of them: if you let the game run on them, they never 
disappear and can be easily observed. Therefore, we tried using the “random” function 
of the code. After randomizing a colouring of the plane (each cell is coloured with a 
certain fixed probability), we let the game run. After it sorts out, we are left with shapes 

                                        
2 https://www.youtube.com/watch?v=VOQrDh6AvYQ 
3 https://openprocessing.org/sketch/806868 

https://www.youtube.com/watch?v=VOQrDh6AvYQ
https://openprocessing.org/sketch/806868
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of the three types we are looking for. Although this method doesn’t give many results 
and lots of them repeat quite often, it works and it helped us find the following 
interesting shapes, including a gliding shape. 

 
Figure 14 2-step periodic shape 

 
Figure 15 2-step periodic shape 

 
Figure 16 A stable shape 

 
Figure 17 3-step glider 

3.3. Game of Life in one dimension 
Up until this point of our presentation, we have analysed the Game of Life in 

two dimensions. In 2D it was very difficult to analyse the cell’s evolution exactly. Now, 
if we take a step higher and play the Game of Life in three dimensions, we will 
probably lose any control we have left. However, if we go down to a single dimension, 
we can easily go through multiple stages of the game. In some cases, we can even find 
the actual pattern. 

The first major advantage of being in a single dimension is that every cell can 
have no more than two neighbours. That is because all of our tilings are represented on 
a straight line. This obviously limits the number of rules we can have.  

We did not know exactly where to start, but in this situation, we had the 
possibility to briefly analyse almost every single rule so that we find something 
interesting. At first, we chose the rule where a cell is born if it has two living 
neighbours and stays alive if it has, again, two living neighbours. We have managed to 
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analyse and understand a significant part of its behaviour, which can be observed in the 
following examples. But first, let us explain to you what an example actually represents.  

 
                             

   
This is the first row of our example. Here we have our starting configuration of 

cells on the line that are going to evolve.  
After the first step, our figure will look like this: 
 

                             
                             

 
Now, this might look as if the evolution of the cells happened in a two-

dimensional environment, but that is definitely not the case. The rows are just stacked 
and each of them represents a different stage of the evolution. The evolution ends just 
before the stage when there are no cells left. So, the final result is the following image: 

 
                             
                             
                             
                             
                             
                             
                             

 
As you can see here, we started with cells that have no space between them. This 

is a rule that does not allow new cells that easily and the number of cells decreases 
constantly. In each cycle, the number of cells goes down by 2. Here we had an odd 
number of starting cells, so the evolution stops at 1 cell. However, if we would have an 
even number of cells, we would end up with two adjacent cells that will then both 
disappear. 

 
                             
                             
                             
                             
                             
                             
                             

In the second example, we started with cells separated by one space. This is an 
extremely important situation, given the properties of the rule, with this being the only 



This article is written by students. It may include omissions and imperfections, as far as 
possible, reported by our reviewers in the editorial notes. 

 

 14 

time two living cells can create a new cell. Here, the rule behaves a little bit different. 
The number of cells decreases just by one, each pair of cells giving life to another.  

Now, let’s move on to some irregular first row arrangements. We’ve previously 
had regular starting shapes, and there are high chances we can see a pattern in their 
evolution. Irregular shapes are a bit more unpredictable and therefore can give us a 
better understanding of the rule. 

 
                              
                              
                              
                              
                              
 
                              
                              
                              
                              
                              
                              
                              

 
Now, these further examples help us in generalizing the behaviour of our rule. 

Firstly, let us denote a dead cell with 0, a single living cell with 1, and the number of 
living cells in a continuous string with 𝑛𝑛. For cell arrangements that can be written as

1 2 3,0, ,0, ,0,...,0, kn n n n , with 3in ≥  the next stage will look like this: 

1 2 3( 2),0,1,0, ( 2),0,1,0, ( 2),0,1,0,...,0,1,0, ( 2)kn n n n− − − −  

If none of the cell strings hit a number lower than 3, then the next stage can be written 
as  

1 2 3( 4),0,1,0, ( 4),0,1,0, ( 4),0,1,0,...,0,1,0, ( 4)kn n n n− − − −  and so on. 

If some in  is below 3, there aren’t major changes, but they still need to be 
mentioned: 

If 2in = we replace the 1,0, ( 2),0,1in −  block in the representation above with a 
1,0,0,1 block. After that, the cells to the left of the block will never interact with the 
cells to the right of the block so we can split our analysis to the two separate groups and 
continue as before. See step 2 in the first irregular example above to see an example of 
this.  

If 1in =  we replace the 0,1,0, ( 2),0,1,0in − block in the representation above 
with a 0,1,0,1,0 block. We can analogously deal with the situation when these blocks 
appear on the edges.  
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However, even now this still looks as if the generalization does not cover every 
path, since we are just defining a particular case. However, if we would have cells 
separated by more than one space, we would still get to the situations shown in the 
examples. So, if we have a cell arrangement that can be written as 

1 1 2 2 1 1, , , ,..., , ,k k kn m n m n m n− − , with each 𝑚𝑚𝑖𝑖 representing the number of dead cells in a 
row, and some 1jm >  then we can split this string into two, the one to the left of jm and 
the one to the right of jm  and analyse these separately using the method above. There 
will be no interactions between these two strings. That is because the cells disappear 
starting from the margins and ending in the center of the string so, during the next 
stages, there will never be situations where two cells reach a gap of just one space to be 
able to interact. 

Now we move on to a different rule. We will present the rule where cells are 
born when they have one living neighbour and a living cell dies no matter how many 
living neighbours it has.  

We have to talk a bit about fractals, since this is exactly what are we going to 
find here when we start with one cell. So, what are they? The simplest explanation is 
the following: a fractal is a rough or fragmented geometrical shape that can be split into 
parts, each of which is (at least approximately) a reduced-sized copy of the whole.  

Here is what we can observe when we stack together the rows that show us how 
the cells evolve if we start with a single living cell:  

Figure 18 The evolution after four steps 

Figure 19 The evolution after 32 steps 

Figure 20 The evolution after 256 steps. The fractal shape is really evident now. 

The shape in figure 18 is the main shape that is repeating. As you can see in the 
next stages, we obtain a larger and larger triangle, the process continuing infinitely. As 
we can observe, from step 256 onwards the triangle is very similar to Sierpinski’s 
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Triangle, which is a remarkable property. 
In the final part of this section we discuss the Sierpinski Triangle and some of its 

properties.  
The Sierpinski Triangle is a fascinating mathematical construction named after 

Wacław Sierpiński (14 March 1882 – 21 October 1969). He is a prominent Polish 
mathematician known for his contributions to set theory, number theory, and topology. 

Let’s delve into the mechanism behind the formation of the Sierpinski Triangle. 
We begin with an equilateral triangle. We then divide it into 4 smaller equilateral 
triangles with half the side length and remove the middle triangle. Thus, three identical 
triangles appear. We can now repeat this process for each of these 3 triangles, obtaining 
9 even smaller triangles. We then repeat the process for these triangles and so on to 
infinity. This recursive process creates countless patterns of smaller triangles within a 
larger framework, contributing to the Sierpinski Triangle's captivating beauty. 

Figure 21 The Sierpinski triangle at stage 0 

Figure 22 The Sierpinski triangle after step 3 

Figure 23 The Sierpinski triangle after step 5 

As can be observed, this pattern becomes more and more similar to the one 
obtained above for the evolution of the one-dimensional rule. 

One particularly interesting property of the Sierpinski triangle is that its area is 0 
while its perimeter is infinite. To see why, let n be the number of steps that have gone 

by. Then, the total perimeter of the 3n triangles at this stage is 33
2

n

L  ⋅ ⋅ 
 

 and the total 
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area of these triangles is 2 3 3
4 4

n

L  ⋅ ⋅ 
 

 where L is the side length of the initial triangle. 

Because the process never ends, n tends to infinity. This means that the perimeter tends 

to infinity, because 3 1
2
> , while the area tends to 0, because 3 1

4
< . 

 
5. CONCLUSION 

To sum up, our investigation into the Game of Life on hexagons and triangles 
has been a rewarding journey into the world of mathematical patterns. By analysing 
different rules, we navigated through stable, oscillating, and gliding patterns, revealing 
the dynamic nature of different rules. We also looked into the one-dimensional Game of 
Life and found some interesting results, including structures that resembled fractals. 
The range of findings demonstrates the complexity and diversity of cell behaviour on 
different geometric shapes. Overall, our research adds to our understanding of 
mathematical patterns while demonstrating the Game of Life's adaptability to various 
tilings. 

 


	2. TILINGS AND RULES

