Generating an octagon

Year 2022 – 2023

Claudia-Maria Banesanu, Dana Georgiana Merticariu

Teacher: Gabriela Elena Zanoschi
School: Colegiul Național din Iași, Romania
Researcher: Marius Apetrij, Universitatea Alexandru Ioan Cuza Iași

The subject: Let $ABCD$ be a square and $E, F, G, H$ midpoints of its sides. Each midpoint is connected by a line with its opposite side edges.

Determine the surface area of the octagon.

Generalizations
1) Generalize the problem for each parallelogram $ABCD$. 
2) But what if the points divide the sides of the square in 3 parts? How about 4? How does the area of the octagon change?

3) How does point 2) generalization apply to a parallelogram?

4) How do you make a regular octagon?

**Solution**

Let $A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8$ be vertices of the octagon and $AB = l$, the side of the square.
\[ AE = \frac{AB}{2} - \frac{CD}{2} = DG \quad \Rightarrow AEDG - \text{rectangle} \]

\[ AE \parallel DG \quad \{ A_1 \} = DE \cap AG = d_1 \cap d_2 \]

\[ \angle EAD = 90^\circ \]

→ \( A_1 \rightarrow \text{midpoint of } DE \) and \( AG \). In the same way we demonstrate that \( A_5 \) is the midpoint of \( EC \) → \( A_1A_5 \rightarrow \text{middle line in } \triangle DEC \) \( \Rightarrow A_1A_5 = \frac{l}{2} \). In the same way we demonstrate that \( A_3A_7 = \frac{l}{2} \).

\[
\begin{align*}
&\Rightarrow \text{Let } A_1A_5 \cap A_3A_7 = \{ O \}, \quad O \text{ is the center of the octagon} \\
&\Rightarrow A_1O = \frac{l}{4} = A_3O = A_5O = A_7O \quad (2) \\
&A_1 \rightarrow \text{midpoint of } DE, \quad H \rightarrow \text{midpoint of } AD \Rightarrow A_1H \text{ is the middle line in } \triangle ADE \Rightarrow \\
&\Rightarrow A_1H = \frac{AE}{2} = \frac{l}{4} = A_1O \Rightarrow A_1 \text{ is the midpoint of } OH. \\
\end{align*}
\]

In the same way we demonstrate that \( A_2 \) is the midpoint of \( OG \) ⇒ \( \angle GOH: GA_1 \) and \( HA_3 \) are medians, \( GA_1 \cap HA_3 = \{ A_2 \} \Rightarrow A_2 \) is center of gravity in \( \triangle GOH \).

Let \( OA_2 \cap GH = \{ M \} \Rightarrow OA_2 = \frac{2}{3} \cdot OM, OM \rightarrow \text{median} \)

\[ \triangle GOH: \text{right isosceles triangle} \Rightarrow \left\{ \begin{align*}
&OA_2 \rightarrow \text{bisector } \overline{GOH} \quad (1) \\
&OM = \frac{HG}{2} \\
\end{align*} \right. \Rightarrow OA_2 = \frac{HG}{3} \)

In \( \triangle DGH \): right triangle, \( DG = DH = \frac{l}{2} \) ⇒ Using the Pythagorean Theorem:

\[ H^2 = \frac{l^2}{4} + \frac{l^2}{4} \Rightarrow HG = \frac{\sqrt{2}l}{2}. \]

\[ \Rightarrow OA_2 = \frac{\sqrt{2}l}{6}. \text{In the same way we demonstrate } OA_4 = OA_6 = OA_8 = \frac{\sqrt{2}l}{6} \quad (3). \]

(1) \( OA_2 \rightarrow \text{bisector } \overline{GOH} = 90^\circ \Rightarrow A_1O \overline{A_2} = A_2O \overline{A_3} = 45^\circ. \) Analog to \( A_3O \overline{A_4} = A_4O \overline{A_5} = \ldots = A_6O \overline{A_7} = 45^\circ \quad (4). \)

From (2), (3), (4) ⇒ \( \triangle A_1O \overline{A_2} \equiv \ldots \equiv \triangle A_2O \overline{A_3} \equiv \ldots \equiv \triangle A_8O \overline{A_1} \Rightarrow \\
\Rightarrow A_{\Delta A_1O \overline{A_2}} = A_{\Delta A_2O \overline{A_3}} = \ldots = A_{\Delta A_6O \overline{A_1}} = \frac{OA_1 \cdot OA_2 \cdot \sin(\angle A_1O \overline{A_2})}{2} = \frac{\frac{l}{2} \cdot \frac{l}{2} \cdot \frac{\sqrt{2}}{2}}{2} = \frac{l^2}{48} \Rightarrow \\
\Rightarrow A_{\text{octagon}} = A_{\triangle} \cdot 8 = 8 \cdot \frac{l^2}{48} = \frac{l^2}{6} = \frac{1}{6} \cdot A_{\triangle ABCD}. \\
\]

**Generalization 1 (1)**
\(AB \parallel CD \Rightarrow BE \parallel DG\) and \(BE = DG \Rightarrow BGDE \rightarrow \text{parallelogram} \Rightarrow A_{BEDG} = BE \cdot h = \frac{AB \cdot h}{2} = \frac{A_{ABCD}}{2}\)

\(BE = \frac{AB}{2} = \frac{CD}{2} = CG\) and \(BE \parallel CG \Rightarrow BECG \rightarrow \text{parallelogram}, CE, BG \rightarrow \text{diagonals} \) and \(CE \cap BG = \{S\} \Rightarrow S \rightarrow \text{midpoint of} \ BG \Rightarrow SG = \frac{BG}{2}\)

Analog to \(W \rightarrow \text{midpoint of} \ DE \Rightarrow WE = \frac{DE}{2} \Rightarrow SG = WE, SG \parallel WE \Rightarrow \)

\[\begin{align*}
\Rightarrow SG &= WE, SG \parallel WE \Rightarrow \\
U, G & \rightarrow \text{midpoint of} \ CH, CD \\
BG &= DE, BG \parallel DE \rightarrow BDEG \rightarrow \text{parallelogram} \Rightarrow S_{GWE} \rightarrow \text{parallelogram} \Rightarrow A_{SGWE} = SG \cdot d(S, WE) = \frac{BG \cdot d(S, WE)}{2} = \frac{BG \cdot d(D, DE)}{2} = \\
= \frac{A_{BEDG}}{2} = \frac{A_{ABCD}}{4} = A_{octagon} + A_{\triangle VUG} + A_{\triangle GUT} + A_{\triangle EQ} + A_{\triangle EQR} \ (1) \\
U, G & \rightarrow \text{middle of} \ CH, CD \Rightarrow UG \rightarrow \text{middle line in} \ \triangle CDH \Rightarrow UG = \frac{DH}{2} = \frac{AH}{2} \Rightarrow UG \parallel DH \Rightarrow \\
UH \cap AG = \{V\} \Rightarrow \text{Using the Fundamental Theorem of Similarity:} \ \triangle AHV \sim \triangle GUV \Rightarrow \\
k = \frac{UG}{UV} = \frac{UV}{AH} = \frac{1}{2} \Rightarrow A_{GUV} = k^2 \cdot A_{\triangle AVH} = \frac{A_{AVH}}{4} \\
AH = \frac{AD}{2} = \frac{BC}{2} = CF, AH \parallel CF \Rightarrow AHCF \rightarrow \text{parallelogram} \Rightarrow A_{AHCF} = AH \cdot d(A, CF) = \\
\Rightarrow \frac{AD \cdot d(A, BC)}{2} = \frac{A_{ABCD}}{2} = \frac{A_{ABCD}}{4} \\
A_{\triangle AHC} = \frac{AH \cdot d(C, AH)}{2} = \frac{A_{AHCF}}{2} = \frac{A_{ABCD}}{4} \\
\text{In} \ \triangle ACD : AG, CH \rightarrow \text{medians, AG} \cap CH = \{V\} \Rightarrow V \rightarrow \text{center of gravity in} \ \triangle ACD \Rightarrow \\
\Rightarrow HV = \frac{CH}{3} \Rightarrow A_{AVH} = \frac{HV \cdot d(A, CH)}{2} = \frac{A_{\triangle AHC}}{3} = \frac{A_{ABCD}}{12} \Rightarrow A_{GUV} = \frac{A_{ABCD}}{48}. \\
\text{Analog to} \ A_{\triangle GUT} = A_{\triangle EXQ} = A_{\triangle EQR} = \frac{A_{ABCD}}{48} = A_{\Delta}. \\
\text{Using} \ (1): \ A_{octagon} + 4 \cdot A_{\Delta} = \frac{A_{ABCD}}{4} \Rightarrow A_{octagon} = \frac{A_{ABCD}}{4} - \frac{A_{ABCD}}{12} \Rightarrow A_{octagon} = \frac{A_{ABCD}}{6}.
\]

**Generalization 2**

Suppose that in the original problem, the segments from the vertices of the square extended not to the midpoints of the opposite sides but to the near-quarter or some other ratio.
After this latest result, we discovered a rule: if the points are at a distance of \( \frac{1}{n} \cdot l \) from one of the vertices of the square, then the area of the octagon is

\[ A_{\text{octagon}} = \frac{(n-1)^2}{n(n+1)} \cdot A_{\text{ABCD}}. \]

For \( n = 2 \), we obtained

\[ A_{\text{octagon}} = \frac{1}{6} \cdot A_{\text{ABCD}} \]

and for \( n = 4 \) we obtained

\[ A_{\text{octagon}} = \frac{9}{20} \cdot A_{\text{ABCD}}. \]

So, we tried to demonstrate this rule for any \( n > 2, n \in \mathbb{R} \).

Let \( I, J, K, L, M, N, O, P \) be at a distance of \( \frac{1}{n} \cdot l \) from one of the vertices of the square.
\[ \triangle DON: \text{isosceles right triangle } \Rightarrow DON = 45^\circ \]  
\[ \triangle DAC: \text{isosceles right triangle } \Rightarrow DAC = 45^\circ \]  
\[ ON, AC \rightarrow \text{straight line } \Rightarrow DON, DAC \rightarrow \text{corresponding angles} \]
\[ AD \rightarrow \text{secant line} \]

\[ \Rightarrow ON \parallel AC \Rightarrow \text{Using the Fundamental Theorem of Similarity:} \]
\[ \begin{align*}
\{ \triangle DON & \sim \triangle DAC \Rightarrow \\
\triangle VON & \sim \triangle VCA \Rightarrow \\
\end{align*} \]
\[ \Rightarrow K_1 = \frac{OD}{AD} = \frac{DN}{DC} = \frac{ON}{AC} = \frac{1}{n} \Rightarrow l = \frac{1}{n} \]
\[ \Rightarrow K_1 = \frac{ON}{AC} = \frac{OV}{VC} = \frac{VN}{AV} = K = \frac{1}{n} \Rightarrow VA = n \cdot VN \Rightarrow AN = (n + 1) \cdot VN, VN = \frac{AN}{n+1} \]
\[ AI = \frac{1}{n} \cdot AB = \frac{1}{n} \cdot CD = DN \Rightarrow AIND \rightarrow \text{parallelogram } AN, DI \rightarrow \text{diagonals} \]
\[ AB \parallel CD \Rightarrow AI \parallel DN \]
\[ \Rightarrow W \rightarrow \text{midpoint of } AN \Rightarrow WN = \frac{1}{2} \cdot AN = \frac{n+1}{2} \cdot VN \Rightarrow \\
\Rightarrow WV = WN - VN = \frac{n-1}{2} \cdot VN \Rightarrow WV = AN \cdot \frac{n-1}{2(n+1)} \]
\[ VN = \frac{AN}{n+1} \]

\[ \triangle ADN: \text{right triangle } \Rightarrow \text{Using the Pythagorean Theorem:} \]
\[ AD^2 + DN^2 = AN^2 = l^2 + \left(\frac{1}{n}\right)^2 = \frac{l^2(n^2+1)}{n^2} \Rightarrow AN = \frac{l}{n} \cdot \sqrt{n^2+1} \Rightarrow WV = \frac{l(n-1)\sqrt{n^2+1}}{2n(n+1)} \]

Analog \( UT = VU = TS = SR = RQ = QX = XW = \frac{l(n-1)\sqrt{n^2+1}}{2n(n+1)} \)

\[ \triangle UVT: \text{isosceles triangle } \Rightarrow \triangle UVT \sim \triangle UDC \]
\[ \triangle DUC: \text{isosceles triangle } \Rightarrow \text{Using the Fundamental Theorem of Similarity:} \]
\[ VC \cap DT = \{U\} \Rightarrow VUT \equiv DUC \]
\[ \Rightarrow K_2 = \frac{UV}{UD} = \frac{UT}{UC} = \frac{VT}{CD} = \frac{\frac{n-1}{n+1} \cdot CO}{\frac{2(n+1)}{2} \cdot CO} = \frac{n-1}{n+1} \Rightarrow A_{VUT} = A_{DUC} \cdot K_2 = \frac{(n-1)^2}{(n+1)^2} \cdot A_{DUC}, VT = \frac{l(n-1)}{n+1} \Rightarrow \\
\Rightarrow U, G \rightarrow \text{midpoints of } CO, CO \Rightarrow UG = \frac{DO}{2} = \frac{l}{2n} \Rightarrow A_{DUC} = \frac{CD \cdot UG}{2} = \frac{l^2}{4n} \]
\[ \Rightarrow A_{VUT} = \frac{l^2(n-1)^2}{4n(n+1)^2} \]
Analog for $A_{RST} = A_{RXQ} = A_{XWV} = \frac{i^2(n-1)^2}{4n(n+1)^2}$.

Analog $TR = RX = XV = \frac{i(n-1)}{n+1} \Rightarrow VTRX \rightarrow$ rhombus

$\triangle UVT \sim \triangle UDC \Rightarrow \text{all internal alternate angles}\Rightarrow VT||CD \Rightarrow VT||TR$

Analog $TR||BC, BC \perp CD$

$VTRX \rightarrow$ square $\Rightarrow A_{VTRX} = (VT)^2 = \frac{i^2(n-1)^2}{n(n+1)^2}$

$A_{octagon} = 4 \cdot A_{VUT} + A_{VTRX} = \frac{i^2(n-1)^2}{n(n+1)^2} + \frac{i^2(n-1)^2}{n(n+1)^2} = \frac{(n-1)^2}{n(n+1)^2} \cdot A_{ABCD}$

$(A_{ABCD} = i^2)$.

**Generalization 3**

Since the original problem on the square turned out to be true for any parallelogram, the natural question at this point is to ask whether this latest result generalizes to any parallelogram.

![Diagram of a parallelogram and additional points](image)

$AI = \frac{1}{n} \cdot AB = \frac{1}{n} \cdot CD
AP = \frac{1}{n} \cdot CL = BK = \frac{1}{n} \cdot AD = \frac{1}{n} \cdot BC$

$\frac{DN}{CD} = \frac{DO}{AD} = \frac{1}{n} \Rightarrow$ Using the Reciprocal of Thales’ Theorem: $ON || AC \Rightarrow$ Using the Fundamental Theorem of Similarity: $\begin{cases} \triangle DON \sim \triangle DAC \\ \triangle VON \sim \triangle VCA \end{cases} \Rightarrow$

$\Rightarrow k_1 = \frac{DN}{CD} = \frac{DO}{AD} = \frac{ON}{AC} = \frac{1}{n}$ and $k_2 = \frac{VO}{VC} = \frac{VN}{VA} = \frac{ON}{AC} = \frac{1}{n} \Rightarrow VA = \frac{1}{n} \cdot VN \Rightarrow$

$\Rightarrow AN = (n + 1) \cdot VN, VN = \frac{AN}{n+1}$.

$AI = \frac{1}{n} \cdot AB = \frac{1}{n} \cdot CD = DN, AI || DN \Rightarrow AIDN \rightarrow$ parallelogram

$AN, DI \rightarrow$ diagonals and $AN \cap DI = \{W\}$

$\Rightarrow W \rightarrow$ midpoint of $AN, DI \Rightarrow WN = \frac{AN}{2} = \frac{n+1}{2} \cdot VN \Rightarrow WV = \frac{n-1}{2} \cdot VN = \frac{n-1}{n+1} \cdot AW$

In the same way, we demonstrate $WX = \frac{n-1}{n+1} \cdot DW$.

$\frac{WX}{DW} = \frac{WX}{AW} = \frac{n-1}{n+1} \Rightarrow XWW = AWD$ (opposite angles at the apex)

$\Rightarrow \triangle ADW \sim \triangle VWX \Rightarrow$
\[ k_3 = \frac{WV}{AW} = \frac{WX}{DW} = \frac{VX}{AD} = \frac{n-1}{n+1} \Rightarrow \]
\[ A_{\Delta VXW} = \left( k_3 \right)^2 \cdot A_{\Delta ADW} = \left( \frac{n-1}{n+1} \right)^2 \cdot A_{\Delta ADW} \]

\[ VX = \frac{n-1}{n+1} \cdot AD. \text{ Analog to } RT = \frac{n-1}{n+1} \cdot BC \text{ and } \]

\[ VT = RX = \frac{n-1}{n+1} \cdot AB. \]

\[ AN \cap DI = \{ W \} \Rightarrow d(W, AD) = \frac{1}{2} \cdot d(N, AD) = \frac{1}{2} \cdot \frac{1}{n} \cdot d(C, AD) \Rightarrow \]
\[ A_{\Delta ADW} = \frac{AD \cdot d(W, AD)}{2} = \frac{1}{4n} \cdot AD \cdot d(C, AD) = \frac{1}{4n} \cdot A_{ABCD} \Rightarrow A_{\Delta VXW} = \frac{(n-1)^2}{4n(n+1)^2} \cdot A_{ABCD} \]

Analog to \[ A_{\Delta XQR} = A_{\Delta RST} = A_{\Delta VUT} = \frac{(n-1)^2}{4n(n+1)^2} \cdot A_{ABCD} = A_{\Delta}. \]

\[ \triangle ADW \sim \triangle VXW \Rightarrow VXW = WAD \text{ (alternate internal angles, } AV \text{ → secant)} \Rightarrow \]
\[ VX || AD. \text{ In the same way, we demonstrate } VT || CD \Rightarrow \overline{AD}C = \overline{XV}T \Rightarrow \]
\[ \sin(\overline{AD}C) = \sin(\overline{XV}T). \]

\[ VT = XR \text{ and } VX = RT \Rightarrow VTRX \rightarrow \text{paralelogram} \Rightarrow A_{VTRX} = VT \cdot VX \cdot \sin(TVX) \Rightarrow \]
\[ A_{VTRX} = \frac{(n-1)^2}{4n(n+1)^2} \cdot A_{ABCD}. \]

\[ A_{\text{octagon}} = 4 \cdot A_{\Delta} + A_{VTRX} = 4 \cdot \frac{(n-1)^2}{4n(n+1)^2} \cdot A_{ABCD} + \frac{(n-1)^2}{(n+1)^2} \cdot A_{ABCD} \Rightarrow \]
\[ A_{\text{octagon}} = \frac{(n-1)^2}{n(n+1)} \cdot A_{ABCD}. \]

**Observation:** \( n - 1 \) must be greater than 0 because \( VT = \frac{n-1}{n+1} \cdot AB. \) As a result, \( n \) must be greater than 1. But what happens if \( n \in (1,2) ? \)

As \( n \) decreases between 2 and 1, we find that the pairs of segments like \( DI \) and \( CJ \) cross and that the area of the octagon continues to shrink as \( n \) approaches 1. But surprisingly, for both the square and the parallelogram, none of the ratios and areas change from the solution to the problem. The “overlapping” does not affect the steps in solving the problem.

**Generalization 4**

When we first thought about how to solve this problem, we incorrectly believed that the initial octagon was a regular octagon, when, in fact, it is not. Although the octagon is equilateral, one can verify that the distances of points \( Q, S, U, W \) from the center of the octagon are not equal to the distances of points \( R, T, V, X \) from the center. So, we may reasonably ask under what conditions the octagon formed is regular.
The octagon can be regular only in the case of the square but not for the general parallelogram. From the symmetries of the square, we can establish without difficulty that the octagon is equilateral and that the eight central angles with vertices at Y are all $45^\circ$; however, in general, $QY = SY = UY = WY$ and $RY = TY = VY = XY$, but the two sets of segments are not equal to each other. For the octagon to be regular, all vertex-center distances must be equal, so we consider the case of $WY = VY$.

In $\triangle ADN: H, W \rightarrow$ midpoints of $AD, AN \Rightarrow HW \rightarrow$ middle line $\Rightarrow HW = \frac{DN}{2} = \frac{l}{2n}$ and $HY = \frac{CD}{2} = \frac{n-1}{2n}$  \(1\)

Using these results: $VT \parallel CD$ and $VT = \frac{n-1}{n+1} \cdot CD$ that were already found in the previous demonstrations, we have $\triangle YVT \sim \triangle YDC$, where $k = \frac{n-1}{n+1} \Rightarrow$ $VY = \frac{n-1}{n+1} \cdot DY = \frac{n-1}{2(n+1)} \cdot BD = \frac{\sqrt{2(n-1)}}{2(n+1)} \cdot l$  \(2\)

From (1), (2) and $WY = VY \Rightarrow \frac{n-1}{2n} = \frac{\sqrt{2(n-1)}}{2(n+1)} \Rightarrow n = \frac{1}{\sqrt{2} - 1}$

The desired points for which $n = \frac{1}{\sqrt{2} - 1}$ are found by bisecting the 45 degree angles between the sides of the square and the diagonals. These lines can also be found by reflecting each of the triangles equivalent to $\triangle DAI$ onto the diagonal, as illustrated.

**Editing notes**

1. Generalization 1 can be obtained without computation from the case of the square. In fact, the parallelogram can be turned into a square by applying a dilatation (which multiplies all areas by the same factor) and a transvection (which preserves all areas). This also applies to Generalization 3 which follows by the same argument from Generalization 2.