Authors

~ Andro Irina
Borgovan Andreea
Doica Rareș Andrei
Hărăguș Andreea
Miron Alexandru Bogdan
Morodan Georgiana Tatiana
Popa Irina

Affiliation

Colegiul Național "Emil Racoviță"

Problem statement

In order to simplify the problem of traffic jams, let's start with a simple case:

- a single line of cars
- the cars are all identical and move at the same speed
- two possible positions: stop or go
- a car moves forward one square when the space in the front of it is empty
- a car stays in place when the space in front of it is occupied.
- by placing a number of cars, study the evolution of traffic

Different Velocities Approach

Computer
Science
Approach

The flow of traffic can be affected by number of lanes, each cars' speeds. For a simple case, with one lane and same speed, it's the ideal situation because it prevents the eventually accidents. Another simple case is with different speed, where it can results many clusters and the flow of straffic is slowing down because of varying acceleration and deceleration of vehicles.

In a complex case, the vehicles have the occasion to change lanes, but it can result a sequence of events that all the cars behind of the relevant car are slowing down (Butterfly effect).

Mathematical

Approach

Convention :
~ 1 = car/occupied space
0 = free space
~ $n=$ number of cars not divided by free spaces ~ m = number of free spaces not divided by cars

We consider that the traffic flows freely if every car (1) is placed between two free spaces (0).
~ most basic case: 1111... (n) fluidises in n-1 moves
~ complicated case: 111.100..011... 11

