autant que possible signalés par nos relecteurs dans les notes d'édition.

Ravitaillement en vol

Année 2022 – 2023

Élèves de 3^{ème}: Juliette DE CHIARA, Nicolas HENRY, Mahe JULES, Tristan LASOU,

Gautier MOUGEOTTE, Maxime PARALIEU, Luca RAMARA, Marion SINGH.

Établissements: Collège Alain-Fournier et Collège Alexander Fleming.

Enseignantes: Florence Ferry et Delphine Fillion.

Chercheurs: Emmanuel KAMMERER, Ecole polytechnique Paris-Saclay et Balthazar

Flechelles à l'IHES à Bures sur Yvette.

Le sujet : Un avion consomme pour simplifier une quantité constante de litres de carburant par kilomètre. Son réservoir est de taille fixe. Il est accompagné d'un groupe d'avions identiques qui servent à le ravitailler. Les avions dont le réservoir est vide abandonnent le groupe et atterrissent. On veut une stratégie pour aller le plus loin possible avec un nombre d'avions n fixé.

Les Résultats: Nos recherches nous ont amenés à explorer deux méthodes de ravitaillement. Pour la première que nous avons longtemps cru qu'elle était la meilleure, nous avons démontré que l'avion principal serait limité en distance, même avec un très grand nombre d'avions de ravitaillement. Une seconde méthode permet à l'avion principal d'aller aussi loin qu'il veut à condition de mettre assez d'avions de ravitaillement. Cette dernière méthode semble être optimale ; nous n'en avons pas trouvé de meilleure.

Dans tout l'article, nous noterons A_1 l'avion principal ; on suppose que cet avion, avec son réservoir plein, peut parcourir une unité de longueur.

I - Première méthode

1) Description de la méthode

 A_1 est seul : il parcourt une unité au maximum

On ajoute A_2 un avion de ravitaillement. Possédant la même quantité de carburant, il peut également parcourir une unité. Arrivé à la moitié de cette longueur d'une unité, il donne tout son carburant restant à A_1 et il atterrit. A_1 peut alors parcourir 0,5 unité de plus.

 A_1 a un avion ravitailleur : il parcourt 1,5 unités au maximum.

On ajoute un troisième avion A_3 ravitailleur, il parcourt les trois quart de sa distance maximale puis donne le quart de son carburant restant à A_1 qui va pouvoir aller plus loin et parcourir 0,25 unité en plus. A_3 ayant donné tout son carburant, il atterrit.

 A_1 a deux avions ravitailleurs : il parcourt 1,75 unités au maximum.

On continue ainsi en ajoutant des avions ravitailleurs : chacun donne à A_1 , la moitié du carburant qu'a donné le précédent puis il atterrit. A_1 augmente constamment ainsi la distance qu'il peut parcourir.

Généralisation de la distance parcourue par A_1 avec n avions ravitailleurs :

$$d_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

Nous pensions que cette méthode était la meilleure.

2) L'avion principal peut-il aller aussi loin qu'il veut ?

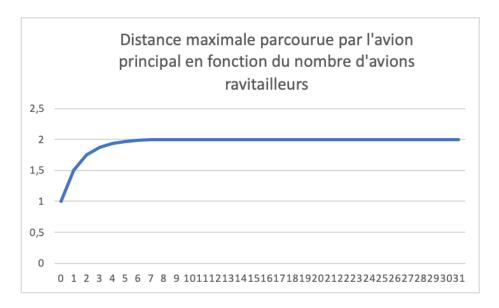
Nous avons rentrés ces données dans un tableur pour regarder comment évoluait d_n .

	Α	В
1	nb d'avions de ravitaillement	distance maximale parcourue par l'avion principal
2	0	1
3	1	1,5
4	2 3	1,75
5	3	1,875
6	4	1,9375
7	5	1,96875
8	6	1,984375
9	7	1,9921875
10	8	1,99609375
11	9	1,998046875
12	10	1,9990234375
13	11	1,99951171875
14	12	1,999755859375
15	13	1,9998779296875
16	14	1,99993896484375
17	15	1,99996948242188
18	16	1,99998474121094
19	17	1,99999237060547
20	18	1,99999618530273
21	19	1,99999809265137
22	20	1,99999904632568
23	21	1,9999952316284
24	22	1,99999976158142
25	23	1,9999988079071
26	24	1,9999994039536
27	25	1,9999997019768

	11	
28	26	1,9999998509884
29	27	1,9999999254942
30	28	1,9999999627471
31	29	1,9999999813736
32	30	1,9999999906868
33	31	1,9999999953434
34	32	1,9999999976717
35	33	1,9999999988358
36	34	1,9999999994179
37	35	1,9999999999709
38	36	1,9999999998545
39	37	1,9999999999272
40	38	1,9999999999636
41	39	1,9999999999818
42	40	1,9999999999999
43	41	1,999999999955
44	42	1,9999999999977
45	43	1,9999999999999
46	44	1,999999999999
47	45	1,999999999999
48	46	1,99999999999999
49	47	1,99999999999999
50	48	2
51	49	
52	50	2 2 2
53	51	2
54	52	2

On s'aperçoit que d_n augmente très lentement. A partir de 48 avions ravitailleurs, d_n stagne à 2. Ce n'est pas possible, puisque d_n ne fait qu'augmenter. Même en ajoutant énormément d'avions, nous n'avons pas réussi à dépasser 2. 2 est ici, un arrondi. On se demande donc si d_n continue à augmenter sans dépasser 2 ou si à partir d'un nombre d'avions très grand, cette distance est dépassée.

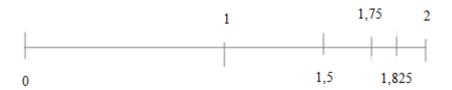
Voici le graphique correspondant à ces données :



Le graphique ne nous permet pas de répondre à la question précédente ; la courbe semble ne pas dépasser 2.

3) L'avion principal ne dépassera jamais 2 unités

Nous allons démontrer graphiquement qu'avec cette méthode, il est impossible de dépasser 2. Comme au 1), on représente la distance parcourue par A_1 (soit 1 unité) sur un segment de longueur 2 unités. S'il y a 1 avion ravitailleur qui donne la moitié de son carburant, alors la distance d parcourue par A_1 est de 1,5 unités. Avec un avion supplémentaire qui donne un quart de son carburant, d vaut 1,75 unités, pour trois avions ravitailleurs, d vaut 1,825 unités, pour 4 avions supplémentaires, d vaut 1,9125 unités, etc... A partir de là, on peut remarquer qu'à chaque avion ravitailleur ajouté, on parcourt en plus la moitié de la distance qu'il nous manque pour atteindre 2 unités.



A chaque fois, on parcourt donc la moitié de ce qu'il reste à parcourir jusqu'à 2 ; donc on ne pourra donc jamais l'atteindre.

Une autre façon de le démontrer est de représenter le carburant initial par un carré. Prenons un carré unité qui représente le carburant de A_1 .

Les avions ravitailleurs vont donner à A_1 leur carburant comme expliqué ci-dessus :

On remplit à chaque étape la moitié de la surface blanche restante. A_1 ne pourra jamais avoir l'équivalent de deux réservoirs pleins.

Remarque : avec cette méthode, les avions ravitailleurs ne ravitaille que le premier avion, donc, au bout d'une unité, il ne peut plus y avoir d'avions ravitailleurs et A_1 se retrouve tout seul ; il pourra alors parcourir au maximum une unité de plus.

Nous nous sommes alors mis à chercher une autre méthode.

II - Deuxième méthode

1) Description de la méthode

 A_1 est seul parcourt une unité au maximum ; A_2 lui donne, arrivé à 0,5 unité de distance, comme dans la première méthode, la moitié de son carburant.

A partir du deuxième avion ravitailleur, la méthode change. A_1 , A_2 et A_3 utilisent un tiers de leur carburant; A_3 répartit ses deux tiers restants en donnant un tiers à A_1 et A_2 , afin que les avions restants soient à nouveau pleins. A_1 et A_2 consomment ensuite la moitié de leur carburant; A_2 donne alors tout à A_1 qui se retrouve à nouveau plein. Avec deux avions ravitailleurs, A_1 parcourt une distance maximale de : $d_2 = 1 + \frac{1}{2} + \frac{1}{3}$ unités.

Si nous prenons quatre avions ravitailleurs, au bout du quart du carburant utilisé, un des trois avions ravitailleurs répartit ses trois quarts de carburant restant aux trois autres qui se retrouvent à nouveau pleins. Ensuite, on réitère la méthode utilisée précédemment. Cela nous donne donc :

$$d_3 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$
 unités.

On peut généraliser cette méthode. Pour n avions ravitailleurs (n + 1 avions au total):

$$d_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n+1}$$

On se demande ici si d_n peut être aussi grand que l'on veut et en particulier si on pourra dépasser deux unités.

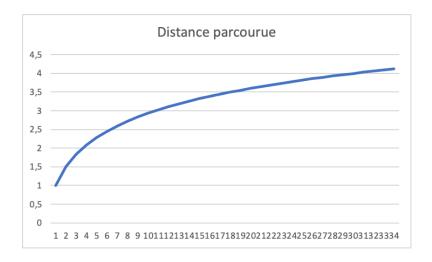
Commençons par regarder les résultats calculés à l'aide d'un tableur :

	А	В	
1	nombre d'avions	distance parcourue	
2	1	1	
3	2	1,5	
4	3	1,833333333	
5	4	2,083333333	
6	5	2,283333333	
7	6	2,45	
8	7	2,592857143	
9	8	2,717857143	
10	9	2,828968254	
11	10	2,928968254	
12	11	3,019877345	
13	12	3,103210678	
14	13	3,180133755	
15	14	3,251562327	
16	15	3,318228993	
17	16	3,380728993	
18	17	3,439552523	
19	18	3,495108078	
20	19	3,547739657	

21	20	3,597739657
22	21	3,645358705
23	22	3,69081325
24	23	3,734291511
25	24	3,775958178
26	25	3,815958178
27	26	3,854419716
28	27	3,891456753
29	28	3,927171039
30	29	3,961653798
31	30	3,994987131
32	31	4,027245195
33	32	4,058495195
34	33	4,088798226
35	34	4,11820999
36	35	4,146781419
37	36	4,174559197
38	37	4,201586224
39	38	4,227902013
40	39	4,253543039
41	40	4,278543039
42	41	4,302933283
43	42	4,326742807
44	43	4,349998621

On dépasse 2 très rapidement. Les résultats augmentent mais de plus en plus faiblement ; va-t-on atteindre n'importe quelle distance ?

Observons le graphique correspondant :



D'après le tableur et le graphique, on a ici l'impression que nous pouvons atteindre n'importe quelle distance grâce à cette méthode....

2) L'avion principal peut aller aussi loin qu'il veut.

Démonstration : Appelons ici d_n , la distance parcourue par A_1 lorsqu'il y a n avions au total.

Remarque : dans cette partie, n désigne le nombre total d'avions et non le nombre d'avions ravitailleurs.

$$d_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n}$$
; d_n possède n termes.

$$d_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

Donc:
$$d_{2n} = d_n + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

n+1, n+2, n+3, ..., 2n sont chacun plus petits ou égaux à 2n.

Donc: $\frac{1}{n+1}$, $\frac{1}{n+2}$, ..., $\frac{1}{2n}$ sont plus grands ou égaux à $\frac{1}{2n}$ et il y a *n* termes.

Donc: $d_{2n} \ge d_n + n \times \frac{1}{2n}$ ce qui nous donne en simplifiant par $n: d_{2n} \ge d_n + \frac{1}{2}$

On aura ainsi : $d_{4n} \ge d_{2n} + \frac{1}{2} \ge d_n + 1$

$$d_{8n} \ge d_{4n} + \frac{1}{2} \ge d_{2n} + 1 \ge d_n + 1 + \frac{1}{2}$$

En doublant le nombre d'avions, on ajoute $\frac{1}{2}$. On peut donc atteindre n'importe quelle distance, il suffira de mettre autant d'avions qu'il faut. Pour chaque unité supplémentaire à parcourir, quadrupler le nombre d'avions permet d'assurer de pouvoir parcourir la distance voulue.

Cette deuxième nous paraît être la plus optimale puisqu'à chaque étape de ravitaillement, tous les avions restants repartent avec le plein. Nous n'avons cependant pas réussi à démontrer ce résultat.