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1 Introduction

The statement of the research topic is as follows: Given a fixed planar model for the shape
of the walls of our school, where the fixed points Q, R and S represent water hydrants (fire
hydrant or yard hydrant), decide, for every point in the interior of our school, which water
hydrant is the closest. [1]

Figure 1 – The plan of the school

2 Approaches and solving

2.1 A mathematical solution

As advertised in the introduction, we are going to work with a planar model of our school.
Every point P in the plane can therefore be represented by a pair of real numbers (xP , yP ).

Formula The distance between two points

A(x1, y1),B(x2, y2) (1)

MATh.en.JEANS 2021-2022 3



is given by the formula

d =
√

(x1 −x2)2 + (
y1 − y2

)2 . (2)

The first idea was to take some random points and calculate the distance between them and
the water points. So, for example we took the point marked with the red cross on Fig.2 and
the distance obtained by applying the formula mentioned before for QX is 11.7, or for QZ is
10.2. But, soon enough we understood that this was not at all an efficient method, an infin-
ity of calculations being needed for a precise result and moreover, there is no deterministic
algorithm that can perform this computation.

Figure 2 – The point we chose to use to exemplify the distance formula

2.2 An efficient method using Geogebra

As the problem is one about distances between points, we thought about circles and their
radiuses. It is well known that circles can be used to determine equal distances, therefore
they can be used to compare distances, as well. For a clean, accurate and rigorous graphic
representation, we used the computer program Geogebra Geometry.
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2.2.1 The greatest distance between a water point and a point in the school

In this section, we aim to learn which points inside and outside of the school are situated
furthest away from each water point.

Extensive scheme. [2] If we create a circle with the center in the water point, the points
furthest away from it, that are included in the surface of the circle, will be located its bound-
ary. Any other point situated inside the created shape will not be as far from the water point
as them. So, if the circle is enlarged until it intersects the area of the school in only one point
(and the rest of the school is inside the circle), that will be the greatest distance between the
used water point and a point in the school.

The first analyzed case was for the point Q(1,11). As described before, the circle with the
center in Q was created and its radius enlarged until it cut through the area of the school
just once. Then the same was done for the yard. Therefore the points marked with the red
crosses (Fig.3) were discovered as creating the biggest distance.

Figure 3 – The points furthest away from Q

The second case was for the point R(6,8). We proceeded just like in the first case: a circle
with the center in R was created and extended until it reached the final point. However, in
this particular case, when creating the second circle to search for the point furthest away in
the yard, it can be observed that actually two points fulfill the requirements (Fig.4)
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Figure 4 – The points furthest away from R

The third case for the point S(7,3). This case comes with no surprises. The procedure
stays the same: the circle is created and enlarged until the entire school is in the circle, except
for one point; and the same goes for the yard. See (Fig.5) for the solutions.

2.2.2 Which area is closest to each water point

The same idea can be adjusted in order to find which water point is closest to any point or
area. A randomly chosen point T is created and then three circles, the distances between
the water points and T being their radiuses. So, basically we combine all the three previous
cases. The point is movable hence this solution answers the question for any point.
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Figure 5 – The point furthest away from S

All the particular cases put together get to the core of the answer. If all the points closest
to each water point are given different colors, the graphic below is achieved. Red represents
all the points closest to R, blue- the ones closest to Q and orange for the ones within the
closest range to S. In consequence, for any random point in the school the closest water
point is given by the color of the point in Fig.7 [3]

2.2.3 Using the perpendicular bisector

Definition. A perpendicular bisector of a line segment is a line that bisects the line segment
at a right angle, through the intersection point. Thus, we can say, a perpendicular bisector
always divides a line segment through its midpoint. The term bisect itself means dividing
equally or uniformly.

The basic property of a perpendicular bisector is that it contains all the points equally
distanced from the ends of the bisected segment. Sometimes the aforementioned property
is taken as the definition of the perpendicular bisector, i.e. the perpendicular bisector of a
segment is the geometric locus of all points in the plane that are equidistant from the end-
points of the given segment. That implies the property of dividing the points from a plane
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Figure 6 – The way we can find the closest water point

Figure 7 – The separation of points
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into the ones closer to each end. For example, in the following image we consider the seg-
ment RS. On the same diagram, UT is its perpendicular bisector. That means all the points
on the right of UT (colored in blue) are closer to S rather than R and the ones in the red area
are closer to R.

Figure 8 – The perpendicular bisector

This means that by using this method for any number of points [4] we will be able to
divide the area in smaller sectors closer to each point, or in our case water points. These
regions are called Voronoi cells. [1] [2] [3] Of course a problem appears when some points
are in the area situated outside the walls. We considered that any points from the boundary
of it are for watering plants. (See details in Fig. 8)

Now, let us generalise. We applied the previous idea for the given points and obtained this
sketch as seen in Fig. 9. Naturally we can use more random points. As we mentioned this
would indicate some wrong cases. These is essentialy due to limitations in the functionalities
of Geogebra, where we did not know how to take walls into consideration when generating
the separating regions. However, the authors managed to overcome this difficulty in the C++
implementation.
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Figure 9 – The generalisation of the method

2.3 A solution using C++ programming

In this subsection, we present a C++ implementation of the solution described above. For do-
ing so, the model of the school is discretized, namely we will consider a finite grid of points in
the plane. The code will be separated in subprograms and specific parts which are explained.
The C++ language was used because it is the one we were most familiar with.

2.3.1 Creating the matrix

Below, the first subprogram has been separated. As shown by its type and name it is a void
subprogram that creates the shape of the school. It’s a void because it does not have to return
any value. Inside the function there are multiple for-loops, with i and j as variables that
browse and create the exact needed shape. In our subprogram the coordinates given in the
problem were used, but they can be easily changed for any random shape. In the end we will
have a matrix where the points in the school are marked with 1 or 2 (for the water points)
and the others with 0.
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void school ( )
{

for ( i n t j = 11; j >= 6 ; j −−)
{

for ( i n t i = 4 ; i <= 6 ; i ++) a [ i ] [ j ] = 1 ;
}
for ( i n t j = 7 ; j >= 6 ; j −−)
{

for ( i n t i = 6 ; i <= 9 ; i ++) a [ i ] [ j ] = 1 ;
}
for ( i n t j = 6 ; j >= 4 ; j −−)
{

for ( i n t i = 1 ; i <= 9 ; i ++) a [ i ] [ j ] = 1 ;
}
for ( i n t j = 4 ; j >= 3 ; j −−)
{

for ( i n t i = 1 ; i <= 7 ; i ++) a [ i ] [ j ] = 1 ;
}
for ( i n t j = 3 ; j >= 1 ; j −−)
{

for ( i n t i = 3 ; i <= 7 ; i ++) a [ i ] [ j ] = 1 ;
}

}

A slight issue appears here, regarding how many points are there. In the 2 dimensional
space there are an infinity, but in C++ the “1”s will appear at every unit, so not an infinity,
however, as mentioned above, in order to build a computer model we must restrict to a finite
number of points. Instead of a continuous 2 dimensional model, we will work with a discrete
finite grid consisting of points. Increasing the number of points in our discrete model, would
increase the accuracy of the approximation of the continuous model. The next part is also a
void function, and as shown by the name, it displays the matrix on the screen when called.

2.3.2 Finding the distance

The next function finds the distance between two points with the coordinates i1, j1 and i2,
j2 in the matrix. It applies the basic math formula, which we showed previously. Unlike the
ones explained before it is not a void because it returns d (the calculated distance). calcu-
lated.
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double distanceBetweenTwoPoints ( i n t i1 , i n t j1 , i n t i2 , i n t j 2 )
{

double d = ( i1 − i2 ) * ( i1 − i2 ) + ( j 1 − j 2 ) * ( j 1 − j 2 ) ;
d = sqrt (d ) ;
return d ;

}

2.3.3 Finding the closest area

This function consists in traversing the entire matrix, and for each point the distance from
it to each water point is checked and the nearest water point is displayed. It is not the most
efficient solution, but it will always give a good result. [5]

void theClosestArea ( )
{

double l [ 1 0 0 1 ] ;
for ( i n t j = 12; j >= 0 ; j −−)
{

for ( i n t i = 0 ; i <= 12; i ++)
{

for ( i n t k = 1 ; k <= n ; k++)
{

l [ k]= distanceBetweenTwoPoints (p[ k ] . f i r s t , p[ k ] . second , i , j ) ;
}
i n t closestWaterPoint = minim( l , n ) ;
cout << closestWaterPoint << ’ ’ ;

}
cout << "\n " ;

}
}

2.3.4 Finding the greatest distance between a water point and any point in the matrix

This function only applies 4.2 for calculating the distance between two points and it displays
the maximum distance between each water point and any point in the matrix. As before, this
program uses one repetitive structure in another, but this is the only way to search through
one matrix.

MATh.en.JEANS 2021-2022 12



{
double theGreatestDistance ( i n t i1 , i n t j1 )

{
double maxd = 0 ;
for ( i n t j = 12; j >= 0 ; j −−)
{

for ( i n t i = 0 ; i <= 12; i ++)
{

i f ( distanceBetweenTwoPoints ( i1 , j1 , i , j ) > maxd && a [ i ] [ j ]==1)
{

maxd = distanceBetweenTwoPoints ( i1 , j1 , i , j ) ;
}

}
}
return maxd;

}

2.3.5 The main function

Finally, there is the main function. Here all the subprograms are put to use and the final
result is shown. The algorithm works for any number of water points and any coordinates
and that is the greatest advantage of all. Naturally there are the declarations and readings
of the different variables. As explained in the comments alongside the code, water points
are marked with 2 in the matrix and points other than water stations are marked with 1.
Then, using the functions explained at 4.2, 4.3 and 4.4 it will display the nearest points and
then the ones situated furthest away. This algorithms and functions can be used and altered
for various requirements, for example if a fire starts in a point it can be quickly determined
which water source is closest; or if the plants in the school yard need to be watered: the same
way of applying the functions. Our next goal is to be able to color the points in the matrix
with 3 or more colors given by the number of water points, in order to differentiate the areas
closest to each water source.
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i n t main ( )
{

school ( ) ; /// points in the school , other than water points ,
are marked with 1
cout << " Enter the number of water points and t h e i r coordinates :
" << "\n " ;
cin >> n ;
for ( i n t i = 1 ; i <= n ; i ++)
{

cin >> p[ i ] . f i r s t >> p[ i ] . second ;
a [p[ i ] . f i r s t ] [ p[ i ] . second ] = 2 ; /// water points are marked
with 2

}
display ( ) ; /// display of the school

cout << "The c l o s e s t area for each water point : " << "\n " ;
theClosestArea ( ) ;
cout << "The gre atest distance i s : " << "\n " ;
for ( i n t i = 1 ; i <= n ; i ++)
{

cout << theGreatestDistance (p[ i ] . f i r s t , p[ i ] . second ) << "\n " ;
}
return 0 ;

}

2.3.6 Using and adapting Lee’s algorithm

Lee’s algorithm [4] is one possible solution for maze routing problems. It always gives an
optimal solution, if one exists, but is slow and requires large memory for dense layout.

Understanding how it works. One key concept to understand is that breadth-first searches
go wide, while depth-first searches go deep. The algorithm is a breadth-first based algorithm
that uses queues to store the steps. It usually uses the following steps:
1. Choose a starting point and add it to the queue.
2. Add the valid neighboring cells to the queue.
3. Remove the position you are on from the queue and continue to the next element.
4. Repeat steps 2 and 3 until the queue is empty. Using the example of a maze solving al-
gorithm, a depth-first approach will try every possible path one by one until it reaches a
dead end or the finish and returns the result. However the path it returns might not be the
most efficient, but simply the first complete path to the finish that the algorithm was able to
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find. This basic use of the algorithm can be developed for solving more complex and realistic
problems. For example, we can add as many starting points as we need. This is exactly the
use of the algorithm we will use to solve our problem.

Figure 10 – How Lee’s algorithm runs

Figure 11 – How Lee’s algorithm is written

MATh.en.JEANS 2021-2022 15



How the code runs. The Geogebra implementation doesn’t always output an accurate pic-
ture of the true answer, because we did not take into account that the school might have
obstacles inside, such as walls. In Fig.12 left, we took some random coordinates for the water
points. The point marked in yellow is the first water point and we can see that the program
displays 1 for the points in the matrix that are closest to this water point. We marked with
yellow the closest area for the first water point and did the same thing for the other two water
points. In Fig.12 right, we took a random point in the matrix (the star) and three other water
points. By using Lee’s algorithm we took into account obstacles (school walls) and calculated
the shortest path.

Figure 12 – How the code runs: in the compiler(left) and in a random matrix(right)

We can use colors for a better understanding and visualization: the blue area is closest to
the hydrant outside the school, the yellow area is closest to the top hydrant, the purple area
is closest to the bottom hydrant and the pink area is placed at the same distance from both
hydrants inside the building as seen in Fig. 13.

Figure 13 – The conclusion for some randomly chosen walls
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2.4 Limitations of study and future research

A main concern regarding our actual method of solving the problem geometrically regards
the existence of walls or any other such obstacles. With coding the problem turns into a
classic one, but we are still working on a solution using geometry to be able to also consider
the walls and not ignore them. One idea is to use more analytic geometry concepts together
with the idea of Voronoi cells. As future plans, besides the one described above we consider
to make an application that simulates Lee’s algorithm and also take into account the possi-
bility of the school having several floors.

2.5 Another approach

[6] To solve our problem without the issue of the school, we just need to trace three segments
[QR], [RS] and [SQ]. Then we need to trace the perpendicular bisector of each segment. After
having defined the three segments, we get the point T, i.e. the circumcenter of QRS, which
is the intersection of the three segments. In this way, we have defined three areas. But the
problem is harder to solve because of the school’s walls. Our research was mostly based on
the shape of the borders between the zone of the faucet R and the one of the faucet S. Our
results give three parts depending on whether the pipe touches the wall or not.

Figure 14 – The medians(perpendicular bisectors)
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In this case (if the pipes don’t touch the corners), the frontier between the two zones is a
part of the median. In this picture we can see the blue area which represents the area from
the watering point R because every point is closer to R than S. And in pink the area which
belongs to the watering point S. But there still are the corners I and H which give us a more
complicated problem to define the white area which can’t be defined because of the median.

Figure 15 – The frontier

When only the pipe of the red’s faucet touches the corner of the school and not the blue
one: we make a rotation which has as center the point H of the faucet S in Z with Z, H and M
being aligned. In consequence we have SH+HM=ZH+HM=ZM. Then we make the median of
RZ, the line HZ and the intersection will be our border (remember that Z is movable on the
arc).

Figure 16 – The rotation
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The weakness of this method is that it does not consider if the two pipes touch the two
corners of the school. We are going to make the distance E1 which corresponds to RI-SH. We
turn this distance into an arc with a ray corresponding to the distance E1, taking the point I
as the center, the point that won’t move. We take the intersection of the median of [HF1] with
the half-line [F1I) to find G1 who’s at the same distance to the two faucets. Then we make

Figure 17 – The arc

the same process with the other watering point to define all the limits.
As you can see in Fig.18, the limit between the area from R and S (green sorts) isn’t a line but
a curved line composed with 3 parts.

Figure 18 – The limit between areas
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3 Conclusion

The results obtained with the two entirely different methods can be observed both in Fig. 13
and Fig.18.
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EDITION NOTES
[1] The statement of the problem is not very precise: are we interested in points both in the
garden and within the building? Since the real distance inside the school depends also from
walls, staircases, etc. the Lee algorithm described below should be mentioned.

[2] This paragraph is rather obscure. It can be replaced by:

“We can create a circle with the center in a water point and enlarge it until the area of the
school is intersected in only one point and the rest of the school is inside it. The radius of the
circle obtained in this way is the greatest distance between the used water point and a point
in the school.”

[3] This solution ignores walls, doors, staircases, etc. And what about the garden?

[4] This point would deserve a deeper explanation. The present situation, with only 3 water
points, is simple because the three perpendicular bisectors intersect in one point (the cir-
cumcenter). What happens with more than 3 points? With 4 points, for instance, we have 6
bisectors.

[5] In what sense the result is good?

[6] The position of this section in the paper suggests that it was conceived as the beginning
of future researches, and hence that an exhaustive treatment should not be expected. More
detailed explanations are actually needed. In particular, the role of the arcs centered in H
and I should be clarified.
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