DECOMPOSING INTEGERS

Year 2020 – 2021

Students: Grosu Alexandru, 10th grade; Lucanu Sebastian Mihai, 10th grade

Teacher: Tamara Culac

School: National College of Iași

Researcher and affiliation: Aurelian Claudiu Volf, Professor, PhD, "Al. I. Cuza" University of Iași

"God created the integers, all else is the work of man." Leopold Kronecker

The Problem. What are **the integers** that can be written as $x^2 + ay^2$, where $a \in \mathbf{Z}$ is fixed?

Remark. Finding $n \in \mathbb{Z}$ that can be written as $x^2 + ay^2$ is like looking for $n \in \mathbb{Z}$ for which the equation $x^2 + ay^2 = n$ has solutions $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. It will be noticed that some equations have no solutions, while others have a finite number of solutions and others have an infinite number of solutions.

Using the Scientific WorkPlace Program for graphing, we will analyze the important cases a = 1, a = -1, a = 2, a = -2, discovering the solvability of equations by graphical search on circles, ellipses, lines and hyperboles. For a=0, we will also mention the graphical answer.

We will present some general results demonstrated in number theory, which are found in the works in the bibliography, both for $a \in \{1, 2, -1, -2, 0\}$ and for other values. We will also mention open problems.

A computer program could be written to generate, for each fixed $a \in \mathbf{Z}$, the numbers $n = x^2 + ay^2 \in \mathbf{Z}$, giving values $(x,y) \in \mathbf{N} \times \mathbf{N}$ and then ordering the generated integers. Having an infinite number of integers, the program must be stopped running imposing an upper generation limit.

I. a > 0 (a = 1, 2, 3, 5, 7, other cases)

Remark. Since $x^2 + ay^2 \ge 0$, $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z} \Rightarrow n \in \mathbb{Z}$, n < 0 cannot be written as $x^2 + ay^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. We look for $n \in \mathbb{Z}$, $n \ge 0$ for which there is $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ such that $n = x^2 + ay^2$.

QUESTION 1. a = 1. What are integers $n \in \mathbb{Z}$, $n \ge 0$ that can be written as $x^2 + y^2$?

Answer 1.1. We partially researched, by **graphical analysis** and algebraic verification, which of the numbers $n \in \{0,1,2,...,21\}$ can be written as $x^2 + y^2$.

1) n = 0: We are looking if the circle that becomes a double point, with the equation

 $x^2 + y^2 = 0 \Leftrightarrow (x, y) = (0, 0),$

MATh.en.JEANS 2020-2021

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. We find: $n = 0 = 0^2 + 0^2$. (1) **2)** $n \in \mathbb{Z}, n \ge 1$: We are looking if the circle with center (0,0) and radius \sqrt{n} , with the equation $x^2 + y^2 = n \Leftrightarrow x^2 + y^2 = (\sqrt{n})^2$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. By searching for $n \in \{1,2,...,21\}$, i.e. looking for the colored circles passing through integer coordinate points, we find *all possible writing solutions*: red: $1 = 1^2 + 0^2 = 0^2 + 1^2 = (-1)^2 + 0^2 = 0^2 + (-1)^2$;

orange: $2 = 1^2 + 1^2 = (-1)^2 + 1^2 = (-1)^2 + (-1)^2 = 1^2 + (-1)^2;$

yellow: 3 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{3}$.

green: $4 = 2^2 + 0^2 = 0^2 + 2^2 = (-2)^2 + 0^2 = 0^2 + (-2)^2$; blue: 5

$$= 2^{2} + 1^{2} = 1^{2} + 2^{2} = (-1)^{2} + 2^{2} = (-2)^{2} + 1^{2} = (-2)^{2} + (-1)^{2} = (-1)^{2} + (-2)^{2} = 1^{2} + ($$

;

purple: 6 cannot be written as x^2+y^2 , i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius V6.

violet: 7 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{7}$.

red:
$$8 = 2^2 + 2^2 = (-2)^2 + 2^2 = (-2)^2 + (-2)^2 = 2^2 + (-2)^2$$
;
orange: $9 = 3^2 + 0^2 = 0^2 + 3^2 = (-3)^2 + 0^2 = 0^2 + (-3)^2$;
vellow:

$$10 = 3^{2} + 1^{2} = 1^{2} + 3^{2} = (-1)^{2} + 3^{2} = (-3)^{2} + 1^{2} = (-3)^{2} + (-1)^{2} = (-1)^{2} + (-3)^{2} = 1^{2}$$

green: 11 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{(11)}$;

blue: 12 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{(12)}$;

purple:

$$13 = 3^{2} + 2^{2} = 2^{2} + 3^{2} = (-2)^{2} + 3^{2} = (-3)^{2} + 2^{2} = (-3)^{2} + (-2)^{2} = (-2)^{2} + (-3)^{2} = 2^{2}$$

violet: 14 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{(14)}$.

red: 15 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius V(15);

prange:
$$16 = 4^2 + 0^2 = 0^2 + 4^2 = (-4)^2 + 0^2 = 0^2 + (-4)^2$$
;
vellow:
 $17 = 4^2 + 1^2 = 1^2 + 4^2 = (-1)^2 + 4^2 = (-4)^2 + 1^2 = (-4)^2$

$$17 = 4^{2} + 1^{2} = 1^{2} + 4^{2} = (-1)^{2} + 4^{2} = (-4)^{2} + 1^{2} = (-4)^{2} + (-1)^{2} = (-1)^{2} + (-4)^{2} = 1^{2}$$

blue: 19 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{(19)}$;

purple:

$$20 = 4^{2} + 2^{2} = 2^{2} + 4^{2} = (-2)^{2} + 4^{2} = (-4)^{2} + 2^{2} = (-4)^{2} + (-2)^{2} = (-2)^{2} + (-4)^{2} = 2^{2}$$

violet: 21 cannot be written as $x^2 + y^2$, i.e. there are no integers coordinates points (x,y) located on the circle with center (0,0) and radius $\sqrt{(21)}$.

MATh.en.JEANS 2020-2021

Graphic conclusions: For $n \in \{1,2,...,21\}$, completely traversing the circles of equations $x^2 + y^2 = n$ (curves with finite length), from the point $(\sqrt{n},0)$ counterclockwise, we found that the numbers

1,2,4,5,8,9,10,13,16,17,18,20

can be written as $x^2 + y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. Due to the symmetry, it is sufficient to find the solutions $(x,y) \in \mathbb{N} \times \mathbb{N}$ for the equation $x^2 + y^2 = n$, i.e. of those points on $\partial x_+, \partial y_+$ or in the Ist quadrant that are on the circle and have coordinates in \mathbb{N} .

Remark 1.3. Let $z = u + iv \in \mathbf{C}$. Then

$$u^{2} + v^{2} = |z|^{2} = |z^{2}| = |u^{2} - v^{2} + i \cdot 2uv| = \sqrt{(u^{2} - v^{2})^{2} + (2uv)^{2}}$$
$$\Leftrightarrow (u^{2} - v^{2})^{2} + (2uv)^{2} = (u^{2} + v^{2})^{2}.$$

A method of generating, by a computer program, the numbers $n = x^2 + y^2 \in \mathbf{N}$ with form derived from Pythagorean numbers, can be obtained by giving values for $(u,v) \in \mathbf{N} \times \mathbf{N}$, with u > v (for such a pair (u,v)we can construct accordingly and (v,u), and (-u,v) and so on). Having obtained an infinite number of integers, the program must be stopped running, imposing an upper generation limit.

QUESTION 2. a = 2. What are integers $n \in \mathbb{Z}$, $n \ge 0$ that can be written as $x^2 + 2y^2$?

Answer 2.1. We partially researched, by graphical analysis and algebraic verification, which of the numbers $n \in \{0,1,2,...,21\}$ can be written as $x^2 + 2y^2$.

1) n=0: We are looking if the ellipse that becomes a double point, with the equation $x^2 + 2y^2 = 0 \Leftrightarrow (x,y) = (0,0),$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. We find: $n = 0 = 0^2 + 2 \cdot 0^2$.

2) $n \in \mathbb{Z}, n \ge 1$: We are looking if the ellipse with center (0,0) and semiaxis $\sqrt{n}, \sqrt{((n/2))}$, with the equation

$$x^{2} + 2y^{2} = n \Leftrightarrow \left(\frac{x^{2}}{(\sqrt{n})^{2}}\right) + \left(\frac{y^{2}}{(\sqrt{n})^{2}}\right) = 1$$

passes through a point with integers coordinates $(x,y) \in \mathbf{Z} \times \mathbf{Z}$. By searching for $n \in \{1,2,...,21\}$, i.e. looking for the colored ellipses passing through integer coordinate points, we find *all possible writing solutions*:

red: $1 = 1^2 + 2 \cdot 0^2 = (-1)^2 + 2 \cdot 0^2$; orange: $2 = 0^2 + 2 \cdot 1^2 = 0^2 + 2 \cdot (-1)^2$; yellow: $3 = 1^2 + 2 \cdot 1^2 = (-1)^2 + 2 \cdot 1^2 = (-1)^2 + 2 \cdot (-1)^2 = 1^2 + 2 \cdot (-1)^2$; green: $4 = 2^2 + 2 \cdot 0^2 = (-2)^2 + 2 \cdot 0^2$; blue: 5 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the ellipse with $x^2 + 2y^2 = 5$; purple: $6 = 2^2 + 2 \cdot 1^2 = (-2)^2 + 2 \cdot 1^2 = (-2)^2 + 2 \cdot (-1)^2 = 2^2 + 2 \cdot (-1)^2$; violet: 7 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the

violet: 7 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the ellipse $x^2 + 2y^2 = 7$;

MATh.en.JEANS 2020-2021

red: $8 = 0^2 + 2 \cdot 2^2 = 0^2 + 2 \cdot (-2)^2$; orange: $9 = 3^2 + 2 \cdot 0^2 = 1^2 + 2 \cdot 2^2 = (-1)^2 + 2 \cdot 2^2 = (-3)^2 + 2 \cdot 0^2 = (-1)^2 + 2 \cdot (-2)^2$ $= 1^2 + 2(-2)^2$;

yellow: 10 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the ellipse $x^2 + 2y^2 = 10$;

green: $11 = 3^2 + 2 \cdot 1^2 = (-3)^2 + 2 \cdot 1^2 = (-3)^2 + 2 \cdot (-1)^2 = 3^2 + 2 \cdot (-1)^2$; blue: $12 = 2^2 + 2 \cdot 2^2 = (-2)^2 + 2 \cdot 2^2 = (-2)^2 + 2 \cdot (-2)^2 = 2^2 + 2 \cdot (-2)^2$;

purple: 13 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the ellipse $x^2 + 2y^2 = 13$;

violet: 14 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (*x*,*y* located on the ellipse $x^2 + 2y^2 = 14$;

red: 15 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (*x*,*y* located on the ellipse $x^2 + 2y^2 = 15$;

orange: $16 = 4^2 + 2 \cdot 0^2 = (-4)^2 + 2 \cdot 0^2$; yellow: $17 = 3^2 + 2 \cdot 1^2 = (-3)^2 + 2 \cdot 1^2 = (-3)^2 + 2 \cdot (-1)^2 = 3^2 + 2 \cdot (-1)^2$; green: $18 = 4^2 + 2 \cdot 1^2 = 0^2 + 2 \cdot 3^2 = (-4)^2 + 2 \cdot 1^2 = (-4)^2 + 2 \cdot (-1)^2 = 0^2 + 2 \cdot (-3)^2 = 4^2 + 2 \cdot (-1)^2$;

blue: $19 = 1^2 + 2 \cdot 3^2 = (-1)^2 + 2 \cdot 3^2 = (-1)^2 + 2 \cdot (-3)^2 = 1^2 + 2 \cdot (-3)^2;$

purple: 20 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the ellipse $x^2 + 2y^2 = 20$

violet: 21 cannot be written as $x^2 + 2y^2$, i.e. there are no integers coordinates points (x,y) located on the ellipse $x^2 + 2y^2 = 21$.

Graphic conclusions: For $n \in \{1, 2, ..., 21\}$, completely traversing ellipses of equations $x^2 + 2y^2 = n$ (*curves with finite length*), from the point (\sqrt{n} ,0) counterclockwise, we found that the numbers

1,2,3,4,6,8,9,11,12,16,17,18,19

can be written as $x^2 + 2y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. Due to the symmetry, it is sufficient to find the solutions $(x,y) \in \mathbb{N} \times \mathbb{N}$ for the equation $x^2 + 2y^2 = n$, i.e. of those points in the Ist quadrant that are on the ellipse and have coordinates in \mathbb{N} .

Remark 2.1. If $n = k^2$, $k \in \mathbb{Z}$ then there exists the trivial writing solution $n = k^2 + 2 \cdot 0^2 = (-k)^2 + 2 \cdot 0^2$.

QUESTION 3. a = 3,5,7. What are integers $n \in \mathbb{Z}, n \ge 0$ that can be written as $x^2 + ay^2$?

Answer 3.1. We partially researched, in the similar way, by **graphical analysis** and algebraic verification, which of the numbers $n \in \{0,1,2,...,21\}$ can be written as $x^2 + ay^2$.

Graphic conclusions: For n = 0, $0 = 0^2 + a \cdot 0^2$. [5] For $n \in \{1, 2, ..., 21\}$, completely traversing ellipses of equations $x^2 + ay^2 = n$ (curves with finite length), from the point (\sqrt{n} ,0) counterclockwise, we found that the numbers

a = 3: 1,3,4,7,9,12,13,16,19,21 a = 5: 1,4,5,6,9,14,16,20,21a = 7: 1,4,7,8,9,11,16

can be written as $x^2 + ay^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. (6)

Remark 3.1. If $n = k^2$, $k \in \mathbb{Z}$ then there exists the trivial writing solution $n = k^2 + a \cdot 0^2 = (-k)^2 + a \cdot 0^2$.

QUESTION 4. Certain a > 0. What are integers $n \in \mathbb{Z}, n \ge 0$ that can be written as $x^2 + ay^2$?

Answer 4.1. Graphical analysis and algebraic verification become difficult for large values of a>0 and n>0. (7)

Remark 4.1. If $n = k^2, k \in \mathbb{Z}$ then there exists the trivial writing solution $n = k^2 + a \cdot 0^2 = (-k)^2 + a \cdot 0^2$.

II. a < 0 (a = -1, -2, other cases) Remark. We look for $n \in \mathbb{Z}$ for which there is $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ such that $n = x^2 + ay^2$.

QUESTION 1. a = -1. What are integers that can be written as $x^2 - y^2$?

Answer 1.1. We partially researched, by **graphical analysis** in a certain region of the plane and algebraic verification, which of the numbers $n \in \{-21, ..., -2, -1, 0, 1, 2, ..., 21\}$ can be written as $x^2 - y^2$. **1)** n = 0: We are looking if the hyperbola that becomes two secant lines, with the equation

 $x^2 - y^2 = 0 \Leftrightarrow (x = y \text{ or } x = -y)$ [8] passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. We find: $n = 0 = 0^2 - 0^2 = ... = (\pm x)^2 - (\pm x)^2 = (\pm x)^2 - (\mp x)^2, \forall x \in \mathbb{Z}$. 2) $n \in \mathbb{Z}, n \ge 1$: We are looking if the hyperbola with the equation

$$x^2 - y^2 = n \Leftrightarrow \left(\frac{x^2}{(\sqrt{n})^2}\right) - \left(\frac{y^2}{(\sqrt{n})^2}\right) = 1$$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. The graphical analysis area must be enlarged as a region in the plane to find at least one solution for writing n, if it exists, using (x,y) integer coordinates. Here, we will increase the symmetric region of the plane $[-5,5] \times [-5,5]$ only partially, relative to $0x_{+}, 0y_{+}$ and Ist quadrant, i.e. to $[0,12] \times [0,12]$, symmetrizing then the solutions found. By searching for $n \in \{$ 1,2,...,21 $\}$, i.e. looking for the colored hyperbolas passing through integer coordinate points, we observe only *some of the possible writing solutions,* those from the studied plan region:

$$x^{2} - y^{2} = n \Leftrightarrow -\left(\frac{x^{2}}{(\sqrt{-n})^{2}}\right) + \left(\frac{y^{2}}{(\sqrt{-n})^{2}}\right) = 1$$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. The graphical analysis area must be enlarged as a region in the plane to find at least one solution for writing n, if it exists, using (x,y) integer coordinates. Here, we will increase the symmetric region of the plane $[-5,5] \times [-5,5]$ only partially, relative to $0x_+, 0y_+$ and Ist quadrant, i.e. to $[0,12] \times [0,12]$, symmetrizing then the solutions found. By searching for $n \in \{$ MATh.en.JEANS 2020-2021 Etablissement : National College of Iasi -21,..., -2, -1, i.e. looking for the colored hyperbolas passing through integer coordinate points, we observe only some of the possible writing solutions, those from the studied plan region:

2) For $n \in \{1,2,...,21\}$, partially traversing hyperbolas of equations $x^2 - y^2 = n$ (curves with infinite length), from the point $(\sqrt{n},0)$ in the lower left to the upper right direction, we found that the numbers 1,3,4,5,7,8,9,11,12,13,15,16,17,19,20,21

MATh.en.JEANS 2020-2021

can be written as $x^2 - y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. Due to the symmetry, it is sufficient to find the solutions $(x,y) \in \mathbb{N} \times \mathbb{N}$ for the equation $x^2 - y^2 = n$, i.e. of those points on Ox_+, Oy_+ or in Ist quadrant that are on the hyperbola and have coordinates in \mathbb{N} .

3) For $n \in \{-21, ..., -2, -1\}$, partially traversing hyperbolas of equations $x^2 - y^2 = n$ (curves with infinite length), from the point $(0, \sqrt{(-n)})$ in the lower left to the upper right direction, we found that the numbers

-1, -3, -4, -5, -7, -8, -9, -11, -12, -13, -15, -16, -17, -19, -20, -21can be written as $x^2 - y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. Due to the symmetry, it is sufficient to find the solutions $(x,y) \in \mathbb{N} \times \mathbb{N}$ for the equation $x^2 - y^2 = n$, i.e. of those points on $0x_+, 0y_+$ or in Ist quadrant that are on the hyperbola and have coordinates in \mathbb{N} .

Answer 1.2. Theorem in Number Theory.

a) If the integer $n \in \mathbb{Z}$ is of the form $2k + 1, k \in \mathbb{Z}$, $n \equiv 1 \pmod{2}$ or $4k, k \in \mathbb{Z}$, $n \equiv 0 \pmod{4}$ then n can be written as $n = x^2 - y^2$, $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.

b) If $n \in \mathbb{Z}$ is of the form $4k + 2, k \in \mathbb{Z}$, $n \equiv 2 \pmod{4}$, the question remains open.

Sketch of proof. We look for $n \in \mathbb{Z}$ for which there exists $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$n = x^2 - y^2 \Leftrightarrow n = (x - y)(x + y).$$

 $\forall n = 2k + 1, k \in \mathbb{Z}$ (so for $n = 4k' + 1, n = 4k' + 3, k' \in \mathbb{Z}$, $\exists x = k + 1 \in \mathbb{Z}$, $\exists y = k \in \mathbb{Z}$ such that $n = x^2 - y^2$. $\forall n = 4k, k \in \mathbb{Z}, \exists x = k + 1 \in \mathbb{Z}, \exists y = k - 1 \in \mathbb{Z}$ such that $n = x^2 - y^2$.

 $\forall n = 4k + 2, k \in \mathbb{Z}$: the question remains open. We tried

 $x - y = 2, x + y = 2k + 1 \Rightarrow x = ((2k + 3)/2) \notin \mathbb{Z}$ and $y = ((2k - 1)/2) \notin \mathbb{Z}$.

Remark 1.1. If $n = k^2$, $k \in \mathbb{Z}$ then there exists the trivial writing solution $n = k^2 - 0^2 = (-k)^2 - 0^2$. If $n = -k^2$, $k \in \mathbb{Z}$ then there exists the trivial writing solution $n = 0^2 - k^2 = 0^2 - (-k)^2$.

QUESTION 2. a = -2. What are integers that can be written as $x^2 - 2y^2$?

Answer 2.1. We partially researched, by **graphical analysis** in a certain region of the plane and algebraic verification, which of the numbers $n \in \{-21, ..., -2, -1, 0, 1, 2, ..., 21\}$ can be written as $x^2 - 2y^2$. **1)** n = 0: We are looking if the hyperbola that becomes two secant lines, with the equation

 $x^2 - 2y^2 = 0 \Leftrightarrow (x = \sqrt{2y} \text{ or } x = -\sqrt{2y})$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. We find: $n = 0 = 0^2 - 2 \cdot 0^2$. **(11) 2)** $n \in Z, n \ge 1$: We are looking if the hyperbola with the equation

$$x^{2} - 2y^{2} = n \Leftrightarrow \left(\frac{x^{2}}{(\sqrt{n})^{2}}\right) + \left(\frac{y^{2}}{(\sqrt{n/2})^{2}}\right) = 1$$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. The graphical analysis area must be enlarged as a region in the plane to find at least one solution for writing n, if it exists, using (x,y) integer coordinates. Here, we will increase the symmetric region of the plane $[-5,5] \times [-5,5]$ only partially, relative to $0x_{+},0y_{+}$ and Ist quadrant, i.e. to $[0,12] \times [0,12]$, symmetrizing then the solutions found. By searching for $n \in \{$ 1,2,...,21 $\}$, i.e. looking for the colored hyperbolas passing through integer coordinate points, we observe only some of the possible writing solutions, those from the studied plan region:

MATh.en.JEANS 2020-2021

3) $n \in \mathbb{Z}, n \leq -1$: We are looking if the hyperbola with center (0,0), with the equation

$$x^{2} - 2y^{2} = n \Leftrightarrow -\left(\frac{x^{2}}{(\sqrt{-n})^{2}}\right) + \left(\frac{y^{2}}{(\sqrt{-n/2})^{2}}\right) = 1$$

passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. The graphical analysis area must be enlarged as a region in the plane to find at least one solution for writing n, if it exists, using (x,y) integer coordinates. Here, we will increase the symmetric region of the plane $[-5,5] \times [-5,5]$ only partially, relative to $0x_+, 0y_+$ and Ist quadrant, i.e. to $[0,12] \times [0,12]$, symmetrizing then the solutions found. By searching for $n \in \{$ $-21,..., -2, -1\}$ i.e. looking for the colored hyperbolas passing through integer coordinate points, we observe only some of the possible writing solutions, those from the studied plan region:

red: -15=we cannot decide from the study. orange: $-16 = 0^2 - 2 \cdot 4^2 = 0^2 - 2 \cdot (-4)^2 = 4^2 - 2 \cdot 4^2 = (-4)^2 - 2 \cdot 4^2 = (-4)^2 - 2 \cdot (-4)^2 = 4^2 - 2 \cdot (-4)^2 - 2 \cdot (-4)^2 = 4^2 - 2 \cdot (-4)^2 =$

yellow: $-17 = 1^2 - 2 \cdot 3^2 = (-1)^2 - 2 \cdot 3^2 = (-1)^2 - 2 \cdot (-3)^2 = 1^2 - 2 \cdot (-3)^2 = 9^2 - 2 \cdot 7^2$ = $(-9)^2 - 2 \cdot 7^2 = (-9)^2 - 2 \cdot (-7)^2 = 9^2 - 2 \cdot (-7)^2$. green: $-18 = 0^2 - 2 \cdot 3^2 = 0^2 - 2 \cdot (-3)^2$. blue: -19=we cannot decide from the study. purple: -20=we cannot decide from the study. violet: -21=we cannot decide from the study.

Graphic conclusions:

1) $n = 0 = 0^2 - 2 \cdot 0^2$.(12)

2) For $n \in \{1,2,...,21\}$, partially traversing hyperbolas of equations $x^2 - 2y^2 = n$ (curves with infinite length), from the point $(\sqrt{n},0)$ in the lower left to the upper right direction, we found that the numbers

1,2,4,7,8,9,14,16,17,18

can be written as $x^2 - 2y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. Due to the symmetry, it is sufficient to find the solutions $(x,y) \in \mathbb{N} \times \mathbb{N}$ for the equation $x^2 - 2y^2 = n$, i.e. of those points on $\partial x_+, \partial y_+$ or in Ist quadrant that are on the hyperbola and have coordinates in \mathbb{N} .

3) For $n \in \{-21, ..., -2, -1\}$, partially traversing hyperbolas of equations $x^2 - 2y^2 = n$ (curves with infinite length), from the point $(0, \sqrt{(-n)})$ in the lower left to the upper right direction, we found that the numbers -1, -2, -4, -7, -8, -9, -14, -16, -17, -18

can be written as as $x^2 - 2y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique. Due to the symmetry, it is sufficient to find the solutions $(x,y) \in \mathbb{N} \times \mathbb{N}$ for the equation $x^2 - 2y^2 = n$, i.e. of those points on $\partial x_+, \partial y_+$ or in Ist quadrant that are on the hyperbola and have coordinates in \mathbb{N} .

QUESTION 3. Certain a < 0. What are integers that can be written as $x^2 + ay^2$?

Answer 3.1. Graphical analysis and algebraic verification become difficult for large values of |a|>0 and |n|>0. For the the prime number n = p > 0, or n = p < 0 the reader can look in the bibliography below (Ionaşcu, Patterson [7])

III. a=0

QUESTION 1. a = 0. What are integers that can be written as $x^2 + 0 \cdot y^2$?

Remark. Solution. Since $x^2 + 0 \cdot y^2 \ge 0$, $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z} \Rightarrow n \in \mathbb{Z}$, n < 0 cannot be written as $x^2 + 0 \cdot y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$.

We look for $n \in \mathbb{Z}, n \ge 0$ for which there is $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ such that $n = x^2 + 0 \cdot y^2$.

Answer 1.1. We partially researched, by **graphical analysis** in a certain region of the plane and algebraic verification, which of the numbers $n \in \{0, 1, 2, ..., 21\}$ can be written as $x^2 + 0 \cdot y^2$.

1) n = 0: We are looking if the two coincident lines, with the equation $x^2 = 0 \Leftrightarrow x = 0$ passes through a point with integers coordinates $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. We find: $n = 0 = 0^2 + 0 \cdot 0^2 = 0^2 + 0 \cdot y^2$, $\forall y \in \mathbb{Z}$.

2) $n \in \mathbf{Z}, n \ge 1$: We are looking if the lines with the equation $x^2 + 0 \cdot y^2 = n \Leftrightarrow (x = \sqrt{n} \text{ or } x = -\sqrt{n})$ passes through a point with integers coordinates $(x,y) \in \mathbf{Z} \times \mathbf{Z}$. By searching for $n \in \{1,2,...,21\}$, i.e. looking for the colored lines passing through integer coordinate points, we observe only *some of the possible writing solutions*, those from the studied plan region:

red: $1 = 1^2 + 0 \cdot y^2 = (-1)^2 + 0 \cdot y^2, y \in \mathbb{Z}$

MATh.en.JEANS 2020-2021

orange: 2 it cannot be written as $x^2 + 0 \cdot y^2$, i.e. there is no integer coordinate point (x,y) located on the lines of equations $x = \sqrt{2}$ or $x = -\sqrt{2}$. yellow: 3 it cannot be written as $x^2 + 0 \cdot y^2$, i.e. there is no integer coordinate point (x,y) located on the lines of equations $x = \sqrt{3}$ or $x = -\sqrt{3}$. green: $4 = 2^2 + 0 \cdot y^2 = (-2)^2 + 0 \cdot y^2, y \in \mathbb{Z}$ blue: 5 it cannot be written as $x^2 + 0 \cdot y^2$, i.e. there is no integer coordinate point (x,y) located on the lines of equations $x = \sqrt{5}$ or $x = -\sqrt{5}$. purple: 6 it cannot be written as $x^2 + 0 \cdot y^2$... violet: 7 it cannot be written as $x^2 + 0 \cdot y^2$, i.e. there is no integer coordinate point (x,y) located on the lines of equations $x = \sqrt{7}$ or $x = -\sqrt{7}$. red: 8 it cannot be written as $x^2 + 0 \cdot v^2$... orange: $9 = 3^2 + 0 \cdot y^2 = (-3)^2 + 0 \cdot y^2, y \in \mathbb{Z}$ vellow: 10 it cannot be written as $x^2 + 0 \cdot y^2$... green: 11 it cannot be written as $x^2 + 0 \cdot y^2$... blue: 12 it cannot be written as $x^2 + 0 \cdot y^2$... purple: 13 it cannot be written as $x^2 + 0 \cdot y^2$... violet: 14 it cannot be written as $x^2 + 0 \cdot y^2$... red: 15 it cannot be written as $x^2 + 0 \cdot y^2$... orange: $16 = 4^2 + 0 \cdot y^2 = (-4)^2 + 0 \cdot y^2, y \in Z$ yellow: 17 it cannot be written as $x^2 + 0 \cdot y^2$... green: 18 it cannot be written as $x^2+0\cdot y^2$... blue: 19 it cannot be written as $x^2 + 0 \cdot y^2$... purple: 20 it cannot be written as $x^2 + 0 \cdot y^2$... violet: 21 it cannot be written as $x^2 + 0 \cdot y^2$...

Graphic conclusions: For $n \in \{1, 2, ..., 21\}$, partially traversing hlines of equations $x^2 + 0 \cdot y^2 = n$ (*curves with infinite length*), from bottom to top direction, we found that the numbers

1,4,9,16

can be written as $x^2 + 0 \cdot y^2$, $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. In addition, the writing is not unique (13)

Bibliography: The reader who wishes to know more about this problem in number theory, she and he can find many results in the following papers.

1. T. Andreescu, *Cercetări de Analiză Diofantică și aplicații,* Teză de doctorat, Universitatea de Vest din Timișoara, Facultatea de Matematică și Informatică, 2003.

2. T. Andreescu, D. Andrica, I. Cucurezeanu, *An Introduction to Diophantine Equation, A Problem-Based Approach*, Birkhäuser, 2010.

3. M. Bănescu, *Numere naturale de forma* x^2+7y^2 , Gazeta Matematică, Seria B, Anul CXII, nr. 10, octombrie 2007.

4. R. E. Borcherds, Introduction to Diophantine equations,

https://www.youtube.com/watch?v=Durr83r-pZk

5. I. Caşu, Á. Bényi, Ecuații diofantice: ecuații Pell-Fermat,

https://pregatirematematicaolimpiadejuniori.files.wordpress.com/2016/07/pell_casu.pdf

6 P.G.L. Dirichlet, Vorlensungen über Zahlentheorie, Braunschweig, 1894.

7. E. J. Ionașcu, J.Patterson, Primes of the form $\pm a^2 \pm qb^2$, Stud. Univ. Babeș-Bolyai Math. 58(2013), No. 4, 421--430

8. A. Muscalu Adrian, Ecuații Diofantice,

https://www.spiruharet-tulcea.ro/gazetamate/nr1/ecdiofantice.pdf

9. L. Panaitopol, A. Ghica, O introducere în aritmetică și teoria numerelor, Editura Universității București, 2001.

10. N. Papacu, Asupra rezolvării ecuației diofantice ax²-by²=c, Gazeta Matematică, Seria B, Anul CV, nr. 4, aprilie 2000.

MATh.en.JEANS 2020-2021

11. M. Penn, A few nonlinear Diophantine equations without solutions,

https://www.youtube.com/watch?v=qHGJQxTAdJg

12. K. Rosen, Elementary Number Theory and Its Application, Addison-Wesley Publishing Company, 1986

13. I. Stanciu, E. Stanciu, I. Stanciu, Numere Pitagoreice, Didactica Mathematica, Vol. 31(2013), No 1, pp. 51-55.

Notes d'édition

(1) This case can be solved directly, without a graphical analysis: the sum of two non negative numbers is equal to 0 if and only onf the 2 numbers are equal to 0.

(2) All these results are easily found without a graphical analysis: if $x^2 + y^2 = n$ then $x^2 \le n$ and $y^2 \le n$. There are only a finite number of couple $(x,y) \in \mathbb{Z}$ such that then $x^2 \le n$ and $y^2 \le n$. With $n \le 21$ it is very to check if there exists n such that $x^2 + y^2 = n$. For instance, if n = 15 then $x \in \{1,2,3\}$ and $y \in \{1,2,3\}$ and there is no solution.

(3) See note (1)

(4) All these results are easily found without a graphical analysis: if $x^2 + 2y^2 = n$ then $x^2 \le n$ and $2y^2 \le n$. There are only a finite number of couple $(x,y) \in \mathbb{Z}$ such that then $x^2 \le n$ and $2y^2 \le n$. With $n \le 21$ it is very to check if there exists n such that $x^2 + 2y^2 = n$. For instance, if n = 21 then $x \in \{1,2,3,4\}$ and $y \in \{1,2,3\}$ and there is no solution.

(5) See note (1)

(6) All these results are easily found without a graphical analysis: if $x^2 + ay^2 = n$ with a>0 then $x^2 \le n$ and $ay^2 \le n$. There are only a finite number of couple $(x,y) \in \mathbb{Z}$ such that then $x^2 \le n$ and $ay^2 \le n$. With $n \le 21$ it is very to check if there exists n such that $x^2 + y^2 = n$. For instance, if n = 15 and a = 3 then $x \in \{1,2,3\}$ and $y \in \{1,2\}$ and there is no solution.

(7) For the prime numbers n = p > 0, some results are known : see the bibliography above.

(8) The graphical analysis is not necessary in this case.

(<u>9)</u> The graphical analysis is not necessary in this case.

(10) The graphical analysis is not necessary in this case.

(<u>11</u>) The graphical analysis is not necessary in this case.

(12) The graphical analysis is not necessary in this case.

(13) We can go to this conclusion much quicky without a graphical analysis: the integers n which can be written as $n = y^2$ are square of an integer. If $n \in \{1, 2, ..., 21\}$, n = 1, 4, 9, 16, as 1, 4, 9, 16 are the only squares in $\{1, 2, ..., 21\}$