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During our work with the golden section
I have special ized in a particular number-
t h e o r y. When one contemplates this field of
mathematics for the fi rst time i t does not
seem possible to find a connection to the gol-
den section, but the deeper one looks the
more links seem to emerge.

This special part of mathematics is the Fibo-
n a c c i - s e r i e s .This series of number is named
after the 13t h-century Italian mathematician,
Leonardo da Pisa.His other name, Fibonacci,
was derived from his father's name, since he
was f i lius (son) of B o n a c c i. Fibonacci intro-
duced arab numbers to Europe, a deed for
which we are now very grateful. But as ear-
lier mentioned he is particularly well known
for what is called the Fibonacci series.In his
book, “Liber Abacci” from 1202, the series is
defined from the following problem :

« A pair of rabbits breeds a new pair of rab-
bits every month, and every new pair breeds
another pair at the age of two months and
from then on one pair every month. H o w
does the number of new-born pairs grow du-
ring the months ?»

The first month 1 new pair is born, and like-
wise the next month. Both pairs arise from
the original pair.

The third month one pair is born by the origi-
nal pair again, but another pair is also born by
the pair born in the first month.

So it continues, as can be seen in the follo-
wing illustration.

The solution to the problem is in modern al-
gebraic terms : the number of pairs born in
month number n equals the number of pairs
born in month number n-1 added to the num-
ber of pairs born in month n-2. If the Fibo-
nacci-series is used as the solution and the
nt h number i s cal l ed Fn, the sol uti on i s
Fn = Fn-1 + Fn-2. For obvious reasons this de-
finition cannot be used for defining F1 and F2
since F- 1 and F0 are not defined. T h e r e f o r e
one adds F1 = 1 and F2 = 1 to the definition.

The reason why this is the solution to the pro-
blem is simple. The number of pairs which
can produce chi ldren in month number n
must be the sum of parents who gave birth to
rabbits in month number n-1 plus the number
of newcomer parents from month n-1 to n.
The number of parents who gave birth in
month number n-1 must equal the number of
newborn pairs in that month since one pair
gives birth to one new pair. The number of
newcomer pairs from month n-1 to n must
equal the number of newborn pairs in month
n-2 since a pair is ferti le at the age of two
m o n t h s .Therefore : Fn = Fn - 1 + Fn - 2.
The Fibonacci series begins with :
1, 1, 2=1+1, 3=2+1, 5=3+2, 8, 13, 21, 34
and so on.
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Si N est n'importe quel nombre, N ÷ 1 = N.



But as earlier mentioned it is difficult to find
a connection between this series and the gol-
den section. To understand this problem one
can use the French term for the golden sec-
tion : “Le nombre d'or” (the golden number).
This term indicates that the golden section is
not only a geometrical phenomenon but that
it is also linked with numbers.

The golden number is the ratio of the golden
section. This ratio, which is posi tive root of
the quadratic equation x2 - x - 1 = 0, is usual-
ly denominated by the greek letter phi, ϕ. By
solving the equation one finds the two roots :
α = (1 + √5)/2  ∨ β = (1 - √5)/2 where the
first root equals ϕ. By simple rewriting one
also finds that the other root equals -1/ϕ.
The first link between the Fibonacci series
and the golden number ϕ is found by dividing
a Fibonacci number by its precedent, that is
Fn + 1 / Fn. Even when n is small it is easily
seen that the ratio is quite near to ϕ. Looking
more closely into it one actually finds that ϕ
is the l imit value when n tends to infinity.
This can easily be shown by rewriting the ex-
pression Fn+1 / Fn :

Fn+1 / Fn = (Fn + Fn-1 )/ Fn = 1 + Fn-1 / Fn

If Fn+1 / Fn has a limit value, let us call it x,
the limit value of Fn-1 / Fn must be 1/x. And
if the limit value does exist it must be root in
the equation x = 1 + 1/x because Fn+1 /Fn→ x
and Fn-1 /Fn→ 1/x and therefore x → 1 + 1/x
(all when n tends to infinity).

It can be shown that the fraction does have a
limit value, and by rewriting the equation one
sees that this value must be either ϕ or -1/ϕ :

x = 1 + 1/x ⇒ x2 = x + 1 ⇒ x2 - x - 1 = 0.

Since all Fibonacci numbers are positive the
limit of the ratio must therefore be ϕ.

The Fibonacci series is in many ways interes-
ting because it is a showcase of number theo-
ry. For example most theorems are proved by
using induction.

The principle of induction is divided into two
phases :
1.— One shows that the theorem is true for a
given number, usually an integer.
2 . — One proves that if the theorem is true
for n it is also true for n + 1.
These two result in a proof of theorem for all
numbers that can be written as p + N, where
p is the given number of phase one and N is a
natural number, i.e. 0, 1, 2, 3, ….

During the following I will give examples of
theorems linking the Fibonacci-series and the
golden number. When writing α and β I refer
to the two roots in the quadratic equation
mentioned earlier, that is α = ϕ, β = -1/ϕ. If a
theorem is proved by induction the bold num-
bers 1 and 2 wil l  indicate the two phases
mentioned above.

1.— x.F2 + F1 = 1.x + 1 = x + 1 = x2

2.— xn+1 = xn.x = x(x.Fn + Fn-1)
= x2.Fn + x.Fn-1
= (x + 1) Fn + x.Fn-1
= x.Fn + Fn + x.Fn-1
= x(Fn + Fn-1) + Fn
= x.Fn+1 + Fn.

This theorem gives an easy way of raising ϕ
to the power  n :
ϕ2 = 1.ϕ + 1 ϕ3 = 2.ϕ + 1 ϕ4 = 3.ϕ + 2
ϕ5 = 5.ϕ + 3 ϕ6 = 8.ϕ + 5 ϕ7 = 13.ϕ + 8
…

The theorem is also used as a lemma to prove
formula for Fn without knowing Fn - 1 a n d
Fn - 2. This formula is called Binet's formula.
It can be proved in many different ways, but I
will just show the most simple proof.

αn = α.Fn + Fn-1 and βn = β.Fn + Fn-1
αn -βn = α.Fn + Fn-1 - β.Fn - Fn-1 = (α - β).Fn
This result in following formula :

Fn = αn -βn

α - β

Theorem :

If x2 = x + 1 that is x = α ∨ x = β, then :

xn = x.Fn + Fn-1, n > 1.
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Now I would l ike to expand the series. T h e
new series are called a (like the Fibonacci is
called F), and are defined just as the Fibonac-
ci series : an = an-1 + an-2. The only differen-
ce is the  first two numbers a1 and a2. These
are different and therefore the whole series is
d i ff e r e n t .For example if a1 = 2 and a2 = 4
then the series would be : 2, 4, 6, 10, 16, 26,
42, … . First I find connection between these
series and the Fibonacci-series :

1.— F2.a1 + F1.a2 = a1 + a2 = a3
2.— an+1 = an + an-1

= Fn-2.a1 + Fn-1.a2 + Fn-3.a1 + Fn-2.a2
= a1.(Fn-2 + Fn-3) + a2.(Fn-1 + Fn-2)
= Fn-1.a1 + Fn.a2.

In these series the ratio between an and an-1
also has the limit value ϕ when n tends to in-
finity :

The theorems which I have proved here are
but a fraction of those concerning the Fibo-
nacci and similar series.The more one looks
into these series the more it seems that there
is some sort of mathematical divinity hidden
in it. For example when one finds a theorem
where by raising α to the power n and adding
β to the power n, one gets only integers, it is
amazing because α and β are such complica-
ted irrational numbers.The theorem seems to
be even more divine when one discover that
the integer results are actually a series of a,
where a1 = 1 and a2 = 3 (the proof has been
left out for reasons of space).

Amazing theorems like this are found by the
dozen, underlining the connection between
the Fibonacci series and the golden section.

Theorem :

an = Fn-2.a1 + Fn-1.a2,        n > 2.

an
an-1

 = Fn-2.a1 + Fn-1.a2
Fn-3.a1 + Fn-2.a2

 = 

a1
a2

 + Fn-1
Fn-2

Fn-3
Fn-2

.a1
a2

 + 1

→ 

a1
a2

 + ϕ

1
ϕ

.a1
a2

 + 1
 = 

a1
a2

 + ϕ .ϕ

ϕ
ϕ.a1

a2
 + ϕ

 = ϕ
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Si on écri t les tables de 2, 12, 22, … , 82, 92, 
les résultats se termineront toujours par les mêmes
chiffres (0, 2, 4, 6, 8).


