The roof is on fire

[Year 2020-2021]
Surnames and first names of students, grades: GALL Ștefania, GRUMĂZESCU George-Octavian, LEFTER Lucia-Maria, MOCANU Radu, OANȚĂ Ana-Estera, RUSU George-Constantin, students in $11^{\text {th }}$ grade

School: Colegiul Național "Costache Negruzzi", Iași
Teacher: Adrian ZANOSCHI
Reasearcher: Iulian STOLERIU, Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iași

1 PRESENTATION OF THE RESEARCH TOPIC

Problems that require determining the optimal trajectory between two points under certain restrictions often occur in practice. In Section 2 of this paper, we try to find the position of a point P such that the path that joins two given points, passing through P, is traveled in minimum time. The speeds with which the road is traveled until the arrival in P and after leaving P are different. In Section 3 we consider the speed constant along the trajectory, but we impose more restrictions on the trajectory.

2 FASTEST PATH PROBLEMS

Problem 1. A tourist is camping on a shore of a straight river. At a given moment, he finds himself at position A (Figure 1), when he sees that the roof of his camping house (situated at position B, on the same side of the river), is on fire. He quickly grabs an empty bucket and wishes to put down the fire with water taken from the river. He runs twice as fast with an empty bucket as with a full one. Where should he get the water along the river to minimize the total travel time to the house?

\qquad
\qquad

Figure 1

Solution. Let us denote by s the line where the shore touches the river and by P the point on the shore of the river where the tourist fills the bucket. Taking into account that the man runs twice as fast with an empty bucket as with a full one, let $2 v$ be the speed of the tourist with an empty bucket and v his speed with a full bucket. The time in which the man covers the distance $A P+P B$ will be therefore

$$
t=\frac{A P}{2 v}+\frac{P B}{v}=\frac{1}{2 v}(A P+2 P B) .
$$

Since v is a constant, it results that t will be minimal if and only if the distance $A P+2 P B$ is minimal.

Figure 2
Let A_{1} and B_{1} be the projections of A and B, respectively, onto the line s of the shore; we expect that $P \in\left[A_{1} B_{1}\right]$. We denote $A A_{1}=a>0, B B_{1}=b>0, A_{1} B_{1}=d>0$. If $A_{1} P=x \in[0, d]$, then $P B_{1}=A_{1} B_{1}-A_{1} P=d-x$. By the Pythagorean Theorem,

$$
A P=\sqrt{a^{2}+x^{2}}, \quad P B=\sqrt{b^{2}+(d-x)^{2}}
$$

so, the problem reduces to finding the minimum of the function $f:[0, d] \rightarrow \mathbb{R}$,

$$
f(x)=\sqrt{a^{2}+x^{2}}+2 \sqrt{b^{2}+(d-x)^{2}} .
$$

Being obtained by compositions and operations with elementary functions, the function f is differentiable and its derivative is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2 \sqrt{a^{2}+x^{2}}} \cdot\left(a^{2}+x^{2}\right)^{\prime}+2 \cdot \frac{1}{2 \sqrt{b^{2}+(d-x)^{2}}} \cdot\left(b^{2}+(d-x)^{2}\right)^{\prime} \\
& =\frac{2 x}{2 \sqrt{a^{2}+x^{2}}}-2 \cdot \frac{2(d-x)}{2 \sqrt{b^{2}+(d-x)^{2}}}=\frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{2(d-x)}{\sqrt{b^{2}+(d-x)^{2}}},
\end{aligned}
$$

for all $x \in[0, d]$. At its turn, f^{\prime} is also differentiable and its derivative is

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\sqrt{a^{2}+x^{2}}-x \cdot \frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{-2 \sqrt{b^{2}+(d-x)^{2}}-2(d-x) \cdot \frac{-(d-x)}{\sqrt{b^{2}+(d-x)^{2}}}}{a^{2}+x^{2}}}{b^{2}+(d-x)^{2}} \\
& =\frac{a^{2}+x^{2}-x^{2}}{\left(\sqrt{a^{2}+x^{2}}\right)^{3}}-\frac{-2\left[b^{2}+(d-x)^{2}\right]+2(d-x)^{2}}{\left(\sqrt{b^{2}+(d-x)^{2}}\right)^{3}} \\
& =\frac{a^{2}}{\left(\sqrt{a^{2}+x^{2}}\right)^{3}}+\frac{2 b^{2}}{\left(\sqrt{b^{2}+(d-x)^{2}}\right)^{3}},
\end{aligned}
$$

for all $x \in[0, d]$. It is obvious that $f^{\prime \prime}(x)>0$ for all $x \in[0, d]$, which implies that f^{\prime} is a strictly increasing function on $[0, d]$. Since f^{\prime} is a continuous function and $f^{\prime}(0)=-\frac{2 d}{\sqrt{b^{2}+d^{2}}}<0$, while $f^{\prime}(d)=\frac{d}{\sqrt{a^{2}+d^{2}}}>0$, it results that there exists a unique point $x_{0} \in(0, d)$ such that $f^{\prime}\left(x_{0}\right)=0$.

Moreover, since f^{\prime} is strictly increasing and $f^{\prime}\left(x_{0}\right)=0$, it follows that $f^{\prime}<0$ on $\left[0, x_{0}\right)$ (hence, f is strictly decreasing on $\left[0, x_{0}\right)$) and $f^{\prime}>0$ on $\left(x_{0}, d\right]$ (hence f is strictly increasing on $\left(x_{0}, d\right]$). Consequently, f attains its minimal value in x_{0} (and only in x_{0}).

The point x_{0} is the unique solution of the equation $f^{\prime}(x)=0$, which is

$$
\begin{aligned}
& \frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{2(d-x)}{\sqrt{b^{2}+(d-x)^{2}}}=0 \Leftrightarrow \frac{x}{\sqrt{a^{2}+x^{2}}}=\frac{2(d-x)}{\sqrt{b^{2}+(d-x)^{2}}} \Leftrightarrow \frac{x^{2}}{a^{2}+x^{2}}=\frac{4(d-x)^{2}}{b^{2}+(d-x)^{2}} \\
& \Leftrightarrow x^{2}\left[b^{2}+(d-x)^{2}\right]=4(d-x)^{2}\left(a^{2}+x^{2}\right) \Leftrightarrow b^{2} x^{2}+x^{2}(d-x)^{2}=4(d-x)^{2} a^{2}+4(d-x)^{2} x^{2} \\
& \Leftrightarrow b^{2} x^{2}-4(d-x)^{2} a^{2}=3(d-x)^{2} x^{2} \Leftrightarrow \frac{b^{2}}{(d-x)^{2}}-\frac{4 a^{2}}{x^{2}}=3 \Leftrightarrow\left(\frac{b}{d-x}\right)^{2}-\left(\frac{2 a}{x}\right)^{2}=3 .
\end{aligned}
$$

Particular cases

(i) Since $3=2^{2}-1^{2}$, we could have $b=2(d-x)$ and $x=2 a$, which implies $b=2 d-4 a$. In other words, whenever $d>2 a$ and $\left(A A_{1}, B B_{1}, A_{1} B_{1}\right)=(a, 2 d-4 a, d)$, the minimum point lays at distance $x=2 a$ from A_{1}.

Examples of such triplets:
$(a, a, 2.5 a) ;(a, 2 a, 3 a),(a, 4 a, 4 a),(a, 6 a, 5 a),(a, 8 a, 6 a),(a, 10 a, 7 a),(a, 12 a, 8 a), \ldots$, in general $(a, 2(k-2) a, k a)$, with $k>2(a>0)$.
(ii) Since $3^{2} \cdot 3=14^{2}-13^{2}$, which is equivalent to $\left(\frac{14}{3}\right)^{2}-\left(\frac{13}{3}\right)^{2}=3$, we could have $b=\frac{14}{3}(d-x)$ and $2 a=\frac{13}{3} x \Leftrightarrow x=\frac{6 a}{13}$, which implies $b=14\left(\frac{d}{3}-\frac{2 a}{13}\right)$. In other words,
whenever $d>\frac{6 a}{13}$ and $\left(A A_{1}, B B_{1}, A_{1} B_{1}\right)=\left(a, 14\left(\frac{d}{3}-\frac{2 a}{13}\right), d\right)$, the minimum point lays at distance $x=\frac{6 a}{13}$ from A_{1}. Examples: $(13 s, 14 s, 9 s),(13 s, 28 s, 12 s)$, with $s>0$ imply $x=6 s$.
(iii) Since $4^{2} \cdot 3=7^{2}-1^{2}$, which is equivalent to $\left(\frac{7}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}=3$, we could have $b=\frac{7}{4}(d-x)$ and $2 a=\frac{x}{4} \Leftrightarrow x=8 a$, which implies $b=\frac{7}{4}(d-8 a)$. In other words, whenever $d>8 a$ and $\left(A A_{1}, B B_{1}, A_{1} B_{1}\right)=\left(a, \frac{7}{4}(d-8 a), d\right)$, the minimum point lays at distance $x=8 a$ from A_{1}. Examples of such triplets are: $(a, 7 a, 12 a),(a, 14 a, 16 a)$, with $a>0$.
(iv) Since $4^{2} \cdot 3=13^{2}-11^{2}$, which is equivalent to $\left(\frac{13}{4}\right)^{2}-\left(\frac{11}{4}\right)^{2}=3$, we could have $b=\frac{13}{4}(d-x)$ and $2 a=\frac{11 x}{4} \Leftrightarrow x=\frac{8 a}{11}$, which implies $b=\frac{13}{4}\left(d-\frac{8 a}{11}\right)$. In other words, whenever $d>\frac{8 a}{11}$ and $\left(A A_{1}, B B_{1}, A_{1} B_{1}\right)=\left(a, \frac{13}{4}\left(d-\frac{8 a}{11}\right), d\right)$, the minimum point lays at distance $x=\frac{8 a}{11}$ from A_{1}. Examples: $(11 s, 13 s, 12 s),(11 s, 26 s, 16 s)$, with $s>0$ imply $x=8 s$.

The first computer program reads the lengths $\mathrm{a}, \mathrm{b}, \mathrm{d}$ of segments $A A_{1}, B B_{1}, A_{1} B_{1}$ and the step pas and makes the point P move on the segment $\left[A_{1} B_{1}\right]$ from A_{1} to B_{1} with step pas, computing the distance dist $=A P+2 P B$ and determining (approximately) the position of point P for which this distance is minimal. [1]

The second program makes the lengths $\mathrm{a}, \mathrm{b}, \mathrm{d}$ of segments $A A_{1}, B B_{1}, A_{1} B_{1}$ vary from zero (exclusive) to a maximum value (maxa, maxb, maxd, respectively) with step pa, pb, pd, respectively, where pa, pb, pd, maxa, maxb, maxd and the step pas for the point P on the segment $\left[A_{1} B_{1}\right]$ are entered by the user. It computes the minimum of dist $=A P+2 P B$, displaying it along with the position of P on $\left[A_{1} B_{1}\right]$.

This allows us to identify particular cases of $\mathrm{a}, \mathrm{b}, \mathrm{d}$ for which the distance $x=A_{1} P$ has a simpler form.

MathenJeans 2020-21 - Colegiul Național "Costache Negruzzi" (Iași, Roumanie)

	$a=4 ; \quad b=5 ; d=1 ;$	minimal dist	$=14.0766 ; \mathrm{A} 1 \mathrm{P}=0.617$
	$a=4 ; b=5 ; d=2$;	al	=14.3026; A1P=1.247
	4; b=5; d=3;	mal	=14.6675;
	$a=4 ; ~ b=5 ; ~ d=4 ;$	minimal	15.1553
0)	$a=4 ; \quad b=5 ; d=5$	1	=15.747
1)	$a=5 ; ~ b=1 ;$	imal	=7.09022;
102)	$a=5 ; b=1 ; ~ d$	imal di	5;
03)	$a=5 ; b=1 ; d=3$;	mal di	=7.76791; A1P=2.752
	$a=5 ; b=1$;	mal	=8.30808;
105)	$a=5 ; b=1 ; d=5 ;$	imal	=8.94691;
106)	$a=5 ; b=2 ; d=1 ;$	mal	=9.08283; A1
	$a=5 ; b=2$;	mal	=9.32557;
108)	$a=5 ; b=2 ; d=3 ;$	minimal	=9.7126; A1
109)	$a=5 ; b=2 ; d=4 ;$	inimal	=10.2225; A1P
	$a=5 ; \quad b=2$;	mal	=10.8326;
11)	$a=5 ; b=3 ; d=1 ;$	imal	=11.0765;
12)	$a=5 ; b=3 ; d=2 ;$	minimal d	=11.3019; A1P
	$a=5 ; ~ b=3 ;$	mal	=11.6639;
14)	$a=5 ; b=3 ; d=4$	mal	=12.1456;
15)	$a=5 ; b=3 ; d=5 ;$	imal d	=12.7276; A1
16)	$a=5 ; ~ b=4 ; d=1 ;$	al	=13.0711;
17)	$a=5 ; b=4 ; d=2 ;$	mal	=13.2812;
18)	$a=5 ; b=4 ; d=3 ;$	imal di	=13.6209; A1
19)	$a=5 ; b=4 ; d=4 ;$	mal d	=14.0764; A1P=2.949
20)	$a=5 ; b=4$;	imal	=14.6315;
121)	$a=5 ; b=5 ; d=1 ;$	minimal di	=15.0664; A1
122)	$a=5 ; b=5 ; d=2 ;$	minimal di	=15.2632; A1P=1.345
123)	$a=5 ; b=5 ; d=3$;	minimal	=15.5828; A1P=2.039
124)	$a=5 ; b=5 ; d=4 ;$	minimal dist	=16.0141; A1P=2.756
	$a=5 ; b=5 ; d=5 ;$	minimal di	=16.5436; A1P=3.503
Process returned 0 (0x0) Press any key to continue.			

Remark. We can use a similar argument to try to locate the point P if the speed of the tourist with an empty bucket is k times his speed with a full bucket, where $k>0$ is a constant. This time we have to minimize $A P+k P B$. With the notations in Figure 2, the problem reduces to finding the minimum of the function $f:[0, d] \rightarrow \mathbb{R}$

$$
f(x)=\sqrt{a^{2}+x^{2}}+k \sqrt{b^{2}+(d-x)^{2}}
$$

which is differentiable and has the derivative

$$
f^{\prime}(x)=\frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{k(d-x)}{\sqrt{b^{2}+(d-x)^{2}}},
$$

for all $x \in[0, d]$. Also using the second derivative, we get that f^{\prime} is strictly increasing on $[0, d]$ and since it is obviously continuous, while $f^{\prime}(0) f^{\prime}(d)=-\frac{k d}{\sqrt{b^{2}+d^{2}}} \cdot \frac{d}{\sqrt{a^{2}+d^{2}}}<0$, we infer that there exists a unique point $x_{0} \in(0, d)$ such that $f^{\prime}\left(x_{0}\right)=0$. Proceeding as above, we conclude that f attains its minimal value in x_{0} (and only in x_{0}).

The point x_{0} verifies the equation $f^{\prime}(x)=0$, which is

$$
\begin{aligned}
& \frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{k(d-x)}{\sqrt{b^{2}+(d-x)^{2}}}=0 \Leftrightarrow x^{2}\left[b^{2}+(d-x)^{2}\right]=k^{2}(d-x)^{2}\left(a^{2}+x^{2}\right) \\
& \Leftrightarrow b^{2} x^{2}-k^{2}(d-x)^{2} a^{2}=\left(k^{2}-1\right)(d-x)^{2} x^{2} \Leftrightarrow\left(\frac{b}{d-x}\right)^{2}-\left(\frac{k a}{x}\right)^{2}=k^{2}-1
\end{aligned}
$$

Problem 2. The same question as in Problem 1, but this time the house is situated at point C, on the other side of the river. Suppose that the swimming speed equals the running speed with a full bucket and the river water is calm.

Figure 3
\qquad

\qquad
\qquad

Solution. Let P_{1} be the point of the shore s where the tourist jumps into the river and begins to swim. If his swimming speed equals his running speed with a full bucket and the river water is calm, then the man saves the most time if the trajectory $P_{1} C$ is a straight line. Let the width of the river be $w>0$. Let C_{2}, C_{1} be the projections of C onto the lines s^{\prime} and s of the shores of the river (thus $C_{1} C_{2}=w$); we expect that $P_{1} \in\left[A_{1} C_{1}\right]$. We denote $A A_{1}=a>0, C C_{2}=c>0$, $A_{1} C_{1}=d_{1}>0$. If $A_{1} P_{1}=x \in\left[0, d_{1}\right]$, then $P_{1} C_{1}=A_{1} C_{1}-A_{1} P_{1}=d_{1}-x$. By the Pythagorean Theorem,

$$
A P_{1}=\sqrt{a^{2}+x^{2}}, \quad P_{1} C=\sqrt{(w+c)^{2}+\left(d_{1}-x\right)^{2}},
$$

Figure 4
so, the problem reduces to finding the minimum of the function $g:\left[0, d_{1}\right] \rightarrow \mathbb{R}$,

$$
g(x)=\sqrt{a^{2}+x^{2}}+2 \sqrt{(w+c)^{2}+\left(d_{1}-x\right)^{2}} .
$$

This problem is similar with Problem 1, the segment $\left[B B_{1}\right]$ being replaced by $\left[C C_{1}\right]$. Therefore, the solution of Problem 2 can be obtained from that of Problem 1 by replacing the distance b from point B to the river with the sum $w+c$ (the width of the river summed with the distance from point C to the river).

3 SHORTEST PATH PROBLEMS

Starting from the research topic formulated at the beginning of the article, we set out to study some similar problems. The difference between Problems 1 and 2 above and the problems below is that we assume that the tourist maintains the same speed. Therefore, he will travel the road in minimum time if and only if he chooses the shortest path. This makes Problem 3 below simpler than Problem 1. Also, this hypothesis allows us to use a completely different approach, namely a geometrical one.

Problem 4 is slightly more complicated than Problem 3, because we need to find a minimal trajectory that touches two intersecting lines. Finally, in Problem 5 we find the position of bridges crossing one or more channels which ensures a minimal path.

Problem 3. If the speed of the tourist with an empty bucket or with a full bucket is the same, where should he get the water along the river to minimize the total travel time to the house?

Solution. Let us suppose that the tourist has the same speed v with an empty or a full bucket. If s is the line where the shore touches the river and P is a point on the shore of the river, then the time in which the man covers the distance $A P+P B$ will be

$$
t=\frac{A P}{v}+\frac{P B}{v}=\frac{1}{v}(A P+P B) .
$$

Since v is a constant, it results that t will be minimal if and only if the distance $A P+P B$ is minimal.

Figure 5

Let B_{1} and B^{\prime} be the projection of B onto s and the symmetrical of B with respect to the line s, respectively (see Figure 5). Let $s \cap\left[A B^{\prime}\right]=\{M\}$. Since s is the mediator of the segment [$B B^{\prime}$], both triangles $M B B^{\prime}$ and $P B B^{\prime}$ are isosceles triangles, therefore $M B=M B^{\prime}$ and $P B=P B^{\prime}$. It results that $A M+M B=A M+M B^{\prime}=A B^{\prime}$ and $A P+P B=A P+P B^{\prime}$. But for all $P \neq M$ the triangular inequality in the triangle $A P B^{\prime}$ implies that $A P+P B^{\prime}>A B^{\prime}=A M+M B$. In conclusion, the point on the shore where the tourist should fill his bucket is M.

Problem 4. Let A and B be two points located on an island at the confluence of two rivers (see Figure 6). John participates to the following photography contest: he has to go from A to the bank of the first river and take a picture, then on the bank of the second river and take another picture and finish his route in B. Where should he reach the banks of the two rivers in order to cover a minimal distance?

Figure 6

Solution. Let A_{1} and A^{\prime} be the projection of A onto $O x$ and the symmetrical of A with respect to the line $O x$, respectively Let B_{1} and B^{\prime} be the projection of B onto $O y$ and the symmetrical of B with respect to the line $O y$, respectively (see Figure 7). Let $\left[A^{\prime} B^{\prime}\right] \cap O x=\{M\}$ and $\left[A^{\prime} B^{\prime}\right] \cap O y=\{N\}$. Let $P \in[O x$ and $Q \in[O y$ such that $P \neq M$ or $Q \neq N$. Since $[O x$ is the mediator of the segment $\left[A A^{\prime}\right]$, both triangles $M A A^{\prime}$ and $P A A^{\prime}$ are isosceles triangles, therefore $M A=M A^{\prime}$ and $P A=P A^{\prime}$. Similarly, since $\left[O y\right.$ is the mediator of the segment $\left[B B^{\prime}\right]$, both triangles $N B B^{\prime}$ and $Q B B^{\prime}$ are isosceles triangles, therefore $N B=N B^{\prime}$ and $Q B=Q B^{\prime}$. It results that $A M+M N+N B=A^{\prime} M+M N+N B^{\prime}=A^{\prime} B^{\prime}$ and $A P+P Q+Q B=A^{\prime} P+P Q+Q B^{\prime}$. Since the shortest path between two points is a straight line, we have $A^{\prime} P+P Q+Q B^{\prime}>A^{\prime} B^{\prime}$, which is equivalent to $A P+P Q+Q M>A M+M N+N B$. Therefore, the points on the shores of the two rivers where John should take the pictures are M and N, the intersections of $\left[A^{\prime} B^{\prime}\right]$ with the shores of the rivers.

Figure 7
Problem 5. Let A and B be two points on opposite sides of a river (suppose that the river has the same width everywhere). Where should a bridge be built such that the distance from A to B is minimal? Generalization for two points A and B separated by $n \geq 1$ parallel channels.

Figure 8
Solution. Let w be the width of the river and denote by s and s^{\prime} the shores of the river. Because the river has the same width everywhere, $s \| s^{\prime}$. Let $B B^{\prime} \perp s, B B^{\prime}=w$ (see Figure 9). Let $\left[A B^{\prime}\right] \cap s=\{M\} \quad$ and $M N \perp s, N \in s^{\prime}$ (obviously, $M N=w$). Since $B B^{\prime} \| M N$ (they are both orthogonal to s) and $B B^{\prime}=M N(=w), B B^{\prime} M N$ is a parallelogram (possibly degenerate, if $A B \perp s$, which implies A, B, B^{\prime} collinear and thus B, B^{\prime}, M, N collinear). Hence $M B^{\prime}=N B$. Consequently,

$$
\begin{equation*}
A B^{\prime}=A M+M B^{\prime}=A M+N B . \tag{1}
\end{equation*}
$$

Figure 9
Now, for any point $P \in s, P \neq M$, if $P Q \perp s, Q \in s^{\prime}$, then $P Q=w=B B^{\prime}$. Also, $P Q \| B B^{\prime}$ because they are both orthogonal to s. Therefore, $P Q B B^{\prime}$ is a parallelogram (possibly degenerate, if $P B \perp s$, which yields P, Q, B, B^{\prime} collinear). Consequently, $Q B=P B^{\prime}$. We see that

$$
\begin{equation*}
A P+Q B=A P+P B^{\prime}>A B^{\prime}=A M+N B \tag{1}
\end{equation*}
$$

By adding $P Q=M N(=w)$ to this inequality, we get $A P+P Q+Q B>A M+M N+N B$, which proves that the bridge which would ensure the minimal distance between A and B is $M N$.

First generalization. Let A and B be separated by two parallel channels of widths w_{1} and w_{2} (Figure 10). Denote by s_{i} and s_{i} ' the shores of channel i, for $i \in \overline{1,2}$. Suppose that each of the channels has the same width everywhere, hence $s_{1}\left\|s_{1}^{\prime}\right\| s_{2} \| s_{2}^{\prime}$.

Let $B B_{1}{ }^{\prime} \perp s_{1}, B B_{1}{ }^{\prime}=w_{1}+w_{2}$.

Let $\left[A B_{1}{ }^{\prime}\right] \cap s_{1}=\left\{M_{1}\right\} \quad$ and $M_{1} N_{1} \perp s_{1}, N_{1} \in s_{1}{ }^{\prime}$ (obviously, $M_{1} N_{1}=w_{1}$). Now N_{1} and B are separated by only one channel, of width w_{2}. According to the first part of this proof, in order to cover the minimum distance between N_{1} and B we have to build the second bridge the
following way: let $B B_{2}{ }^{\prime} \perp s_{2}, B B_{2}{ }^{\prime}=w_{2}$ (hence $B-B_{2}{ }^{\prime}-B_{1}{ }^{\prime}$ and $B_{2}{ }^{\prime} B_{1}{ }^{\prime}=B B_{1}{ }^{\prime}-B B_{2}{ }^{\prime}=w_{1}$); let $\left[N_{1} B_{2}{ }^{\prime}\right] \cap s_{2}=\left\{M_{2}\right\}$ and $M_{2} N_{2} \perp s_{2}, N_{2} \in s_{2}{ }^{\prime}$ (thus, $M_{2} N_{2}=w_{2}$).

Figure 10
We claim that $A M_{1}+M_{1} N_{1}+N_{1} M_{2}+M_{2} N_{2}+N_{2} B$ is the minimal distance between A and B in the conditions of the problem. Indeed, from the first part of the proof we also know that

$$
\begin{equation*}
N_{1} B_{2}{ }^{\prime}=N_{1} M_{2}+N_{2} B . \tag{2}
\end{equation*}
$$

On the other hand, since $B_{1}{ }^{\prime} B_{2}{ }^{\prime}=M_{1} N_{1}\left(=w_{1}\right)$ and $B_{1}{ }^{\prime} B_{2}{ }^{\prime} \| M_{1} N_{1}$ (they are both orthogonal to the shorelines), we get that $B_{1}{ }^{\prime} B_{2}{ }^{\prime} N_{1} M_{1}$ is a parallelogram (possibly degenerate, if $A B$ is orthogonal to the shore lines, which implies that all the points $A, B, B_{1}{ }^{\prime} M_{1}, N_{1}, B_{2}{ }^{\prime}, M_{2}, N_{2}$ are collinear). Consequently, $M_{1} B_{1}{ }^{\prime}=N_{1} B_{2}{ }^{\prime}$. Therefore, relation (2) can be rewritten

$$
\begin{equation*}
M_{1} B_{1}{ }^{\prime}=N_{1} M_{2}+N_{2} B . \tag{3}
\end{equation*}
$$

Let now $P_{1} Q_{1} \perp s_{1}$, with $P_{1} \in s_{1}, Q_{1} \in s_{1}{ }^{\prime}$ (so $P_{1} Q_{1}=w_{1}$) and $P_{2} Q_{2} \perp s_{2}$, with $P_{2} \in s_{2}, Q_{2} \in s_{2}{ }^{\prime}$ (which implies $P_{2} Q_{2}=w_{2}$). We want to prove that if $P_{1} \neq M_{1}$ or $P_{2} \neq M_{2}$, then

$$
A P_{1}+P_{1} Q_{1}+Q_{1} P_{2}+P_{2} Q_{2}+Q_{2} B>A M_{1}+M_{1} N_{1}+N_{1} M_{2}+M_{2} N_{2}+N_{2} B .
$$

Indeed, let $P_{2}{ }^{\prime} \in Q_{2} P_{2}$ such that $Q_{2}-P_{2}-P_{2}{ }^{\prime}$ and $P_{2} P_{2}{ }^{\prime}=w_{1}=P_{1} Q_{1}$. Since the lines $P_{2} P_{2}$ 'and $P_{1} Q_{1}$ are also parallel (they are both orthogonal to the shore lines), the quadrilateral $P_{2} P_{2}{ }^{\prime} P_{1} Q_{1}$ is a parallelogram (possibly degenerate, if $P_{1} P_{2}$ is orthogonal to the shore lines). Hence, $Q_{1} P_{2}=P_{1} P_{2}{ }^{\prime}$. On the other hand, $P_{2}{ }^{\prime} Q_{2}=P_{2}{ }^{\prime} P_{2}+P_{2} Q_{2}=w_{1}+w_{2}=B B_{1}{ }^{\prime}$. Since the lines $P_{2}{ }^{\prime} Q_{2}$ and $B B_{1}{ }^{\prime}$ are also parallel (they are both orthogonal to the shore lines), the quadrilateral $P_{2}{ }^{\prime} Q_{2} B B_{1}$ 'is a parallelogram (possibly degenerate, if $B P_{2}$ is orthogonal to the shore lines, which implies $P_{2}, Q_{2}, P_{2}{ }^{\prime}, B, B_{1}{ }^{\prime}$ collinear). Therefore, $Q_{2} B=P_{2}{ }^{\prime} B_{1}{ }^{\prime}$. Thus,

$$
A P_{1}+Q_{1} P_{2}+Q_{2} B=A P_{1}+P_{1} P_{2}^{\prime}+P_{2}^{\prime} B_{1}^{\prime}>A B_{1}^{\prime},
$$

because the shortest path between A and $B_{1}{ }^{\prime}$ is the straight line. By consequence,

$$
\begin{gathered}
A P_{1}+P_{1} Q_{1}+Q_{1} P_{2}+P_{2} Q_{2}+Q_{2} B=A P_{1}+w_{1}+Q_{1} P_{2}+w_{2}+Q_{2} B>w_{1}+w_{2}+A B_{1}{ }^{\prime}= \\
=w_{1}+w_{2}+A M_{1}+M_{1} B_{1}{ }^{\prime(3)}=w_{1}+w_{2}+A M_{1}+N_{1} M_{2}+N_{2} B= \\
=A M_{1}+M_{1} N_{1}+N_{1} M_{2}+M_{2} N_{2}+N_{2} B
\end{gathered}
$$

that completes the proof.
Summarizing, if A and B are separated by two channels, then for a minimal distance we must build the bridges the following way: we take $B B_{1}{ }^{\prime} \perp s_{1}, B B_{1}{ }^{\prime}=w_{1}+w_{2}$, then $\left[A B_{1}{ }^{\prime}\right] \cap s_{1}=\left\{M_{1}\right\}$ and $M_{1} N_{1} \perp s_{1}, N_{1} \in s_{1}{ }^{\prime}$; in the second step we take $B_{2}{ }^{\prime} \in\left(B B_{1}{ }^{\prime}\right)$ such that $B B_{2}{ }^{\prime}=w_{2}$, then $\left[N_{1} B_{2}{ }^{\prime}\right] \cap s_{2}=\left\{M_{2}\right\}$ and finally $M_{2} N_{2} \perp s_{2}, N_{2} \in s_{2}{ }^{\prime}$.

Second generalization. Let A and B be separated by n parallel channels of widths $w_{1}, w_{2}, \ldots, w_{n}$, respectively. Denote by s_{i} and s_{i} ' the shores of channel i, for $i \in \overline{1, n}$. Suppose that each of the channels has the same width everywhere, hence $s_{1}\left\|s_{1}^{\prime}\right\| s_{2}\left\|s_{2}^{\prime}\right\| \cdots\left\|s_{n}\right\|$ s_{n}^{\prime}. We want to determine the position of n bridges over the n channels in order to get the shortest road from A to B by crossing these bridges.

It can be proved by mathematical induction that the bridges must be built the following way:

- in the first step we take $B B_{1}{ }^{\prime} \perp s_{1}, B B_{1}{ }^{\prime}=\sum_{i=1}^{n} w_{i}$, then $\left[A B_{1}{ }^{\prime}\right] \cap s_{1}=\left\{M_{1}\right\}$ and $M_{1} N_{1} \perp s_{1}$, $N_{1} \in s_{1}{ }^{\prime} ;$
- in the second step we take $B_{2}{ }^{\prime} \in\left(B B_{1}{ }^{\prime}\right)$ such that $B B_{2}{ }^{\prime}=\sum_{i=2}^{n} w_{i}$, then $\left[N_{1} B_{2}{ }^{\prime}\right] \cap s_{2}=\left\{M_{2}\right\}$ and $M_{2} N_{2} \perp s_{2}, N_{2} \in s_{2}{ }^{\prime} ;$
\vdots
- generally, in step $k \in \overline{2, n} \quad$ we take $B_{k}{ }^{\prime} \in\left(B B_{1}{ }^{\prime}\right)$ such that $B B_{k}{ }^{\prime}=\sum_{i=k}^{n} w_{i}$, then $\left[N_{k-1} B_{k}{ }^{\prime}\right] \cap s_{k}=\left\{M_{k}\right\}$ and $M_{k} N_{k} \perp s_{k}, N_{k} \in s_{k}{ }^{\prime}$.

The proof uses the same ideas as the first generalization (case $n=2$). Basically, if we compare the path $A M_{1} N_{1} M_{2} N_{2} \ldots M_{n} N_{n} B$ with any other path $A P_{1} Q_{1} P_{2} Q_{2} \ldots P_{n} Q_{n} B$, they have in common the lengths of the bridges ($M_{i} N_{i}=P_{i} Q_{i}=w_{i}$, for $i \in \overline{1, n}$). What distinguishes these two paths is that, using convenient parallelograms, the remaining segments of the first path can be moved, side by side, to cover the segment $A B_{1}{ }^{\prime}$, while the remaining segments of the second path will move on a broken line uniting the points A and $B_{1}{ }^{\prime}$ (in Figure 11 we represented the case $n=4$, for a better understanding). Therefore, the first path is the shortest.

Figure 11

MathenJeans 2020-21 - Colegiul Național "Costache Negruzzi" (Iași, Roumanie)

4 CONCLUSION

We have used Calculus to answer the questions in the research proposal. Also, we have written a C++ code to approximate the solutions of the equations obtained and to observe simpler particular cases. We expect that if the speed with which the road is traveled varies in a more complicated way, the derivation of the equations will not be easy at all.

In the sequel we considered three related problems. By considering the speed of the traveler constant, we were able to use a geometrical approach to solve them.

EDITION NOTES

[1] We have all the information that we need about the function $f^{\prime}(x)$. Then, it would have been simpler to write a program that approximates the solution of $f^{\prime}(x)=0$. For instance, we can develop a program that determines a sequence $\left[a_{0}, b_{0}\right] \supset\left[a_{1}, b_{1}\right] \supset$ $\left[a_{2}, b_{2}\right] \supset \cdots$ of intervals such that $f^{\prime}\left(a_{i}\right)<0$ and $f^{\prime}\left(b_{i}\right)>0$, and terminates when $b_{i}-a_{i}$ is less than a given value. A program of this kind is also likely to be computationally more efficient than that considered in the work.

