Les sujets des ateliers MATh.en.JEANS

Tas de cailloux
Association Science Ouverte (Bobigny)  2023-2024
Il s'agit d'étudier les masses de cailloux d'un tas qu'on peut subdiviser en 2 tas de mêmes masses sous certaines conditions
Congestion routière
Collège Fernand Puech (Laval), Lycée Douanier Rousseau (Laval) 2023-2024
Il a été observé en pratique que rajouter des axes de circulation pouvait, curieusement, ralentir le trafic, ou qu'au contraire, fermer un axe (ainsi la 42ème rue à New-York le 22 avril 1990, une des rues les plus animées de Manhattan) pouvait rendre le trafic plus fluide. Comment donner des exemples de telles situations --- idéalement, des exemples s'approchant des changements de circulation au sein du centre-ville de Laval ?
Bandits à K bras
Collège Fernand Puech (Laval), Lycée Douanier Rousseau (Laval) 2023-2024
On suppose faire face à une machine à sous avec K >= 2 bras. Chaque bras j procure des gains aléatoires, selon une loi de Bernoulli de paramètre p_j inconnu. Comment bien identifier un bon bras (voire le meilleur bras), et quels sont des écueils à éviter dans cette quête ? On pourra idéalement commencer à explorer ce sujet avec des simulations numériques.
Les nombres qui nous entourent
Collège Fernand Puech (Laval), Lycée Douanier Rousseau (Laval) 2023-2024
Des observations effectuées depuis un siècle et demi montrent que les nombres que nous rencontrons dans la vie quotidienne se répartissent selon une certaine loi. Faites l'expérience --- prenez une ou plusieurs sources de données, comme un exemplaire de journal, relevez tous les nombres, et classez-les : qu'observez-vous ? Nous essaierons ensuite d'expliquer mathématiquement cette loi, en créant numériquement des séries de nombres 'naturels'.
Anticiper l'anticipateur
Lycée Jules Ferry (Paris), Lycée Condorcet (Montreuil), Lycée Charles de Gaulle (Rosny) 2023-2024
On regroupe n personnes pour jouer à un jeu très simple. Chaque joueur va écrire de manière caché sur un papier un nombre entre 0 et 100, puis placera ce papier dans un chapeau. Le gagnant est le joueur qui aura été le plus proche des deux tiers de la moyenne de tous les nombres proposés. Derrière ce jeu apparemment trivial se cache-t-il une redoutable stratégie gagnante ?
Mystérieuses spirales
Lycée Jules Ferry (Paris), Lycée Condorcet (Montreuil), Lycée Charles de Gaulle (Rosny) 2023-2024
On trace dans le plan les points de coordonnées polaires (1; 1), (2; 2), (3; 3), (4; 4) . . . Il semble qu’il se dégage une spirale à 6 bras du nuage de points.
Si on prend un peu de hauteur, la spirale semble avoir 44 bras !
Pouvez-vous expliquer ce mystérieux phénomène ?
Que se passe-t-il si on ne considère plus que les points de coordonnées des nombres premiers ?
Morpion reloaded
Lycée Jules Ferry (Paris), Lycée Condorcet (Montreuil), Lycée Charles de Gaulle (Rosny) 2023-2024
Fatigués que leurs parties du jeu de morpion classique se terminent toujours par des matchs nuls, deux élèves proposent la variante suivante du jeu :
— le jeu se déroule sur un damier infini dans les deux directions.
— on fixe un entier n≥2.
— le premier joueur joue les croix et le second les ronds.
— le premier joueur gagne s’il parvient à aligner n croix (horizontalement, verticalement ou en diagonale) ; sinon, le second joueur est déclaré gagnant.
Ce jeu est-il plus intéressant que le jeu classique? Peut-on trouver des stratégies gagnantes pour l’un ou l’autre des joueurs ? Cela dépend-il de l’entier n choisi ?
Potion magique
Lycée Jules Ferry (Paris), Lycée Condorcet (Montreuil), Lycée Charles de Gaulle (Rosny) 2023-2024
Asterix a perdu un tonneau de potion magique au milieu d’une cave remplie de mille tonneaux de vin, tous identiques. Pour retrouver ce tonneau, il reçoit l’aide des habitants de son village. Seul problème, les effets de la potion apparaissent 24h après la consommation, et les gaulois ont besoin d’avoir retrouvé le tonneau de potion magique pour le lendemain car les romains vont attaquer. La stratégie d’Asterix est la suivante : chaque habitant va goûter immédiatement le contenu d’un ou plusieurs tonneau, puis on attend 24h et on regarde qui bénéficie des effets de la potion magique. En fonction du résultat, on devine quel est le tonneau recherché.
Quel est le nombre minimal d’habitants nécessaire pour identifier le bon tonneau? Proposer une stratégie optimale. Panoramix remarque cependant que la méthode n’est pas complètement fiable, puisque parfois, certains gaulois ne réagissent pas à ce mélange alcool-potion comme prévu : il arrive que certains ayant goûté à la potion n’y soient pas sensibles, et… voir la suite
La monnaie de l'empereur
Lycée Jules Ferry (Paris), Lycée Condorcet (Montreuil), Lycée Charles de Gaulle (Rosny) 2023-2024
Dans un pays très lointain, deux forgerons concurrents, notés A et B, sont responsables de la fabrication des pièces de monnaie. L’empereur impose les règles suivantes pour réguler la concurrence féroce entre les deux individus :
— dans ce pays, le nombre 1 porte malheur, rendre la monnaie est interdit, et tous les prix doivent être des nombres entiers positifs.
— chaque forgeron choisit, en alternance, un entier k ≥ 1 et obtient le droit de fabriquer en grande quantité des pièces de valeur k. La seule contrainte sur l’entier k est que les pièces de valeur k ne soient pas inutiles, c’est-à-dire que l’on ne puisse pas payer la somme k à l’aide des autres pièces déjà fabriquées.
— le forgeron qui est obligé de choisir la valeur 1 est frappé par la malédiction et doit laisser la place à son concurrent.
Est-on sûr que ce procédé fournit un vainqueur en un temps fini ? Le nombre de valeurs différentes choisies peut-il être arbitrairement grand ? Comment pourriez-vous conseiller les… voir la suite
Le football théorique
Lycée Jules Ferry (Paris), Lycée Condorcet (Montreuil), Lycée Charles de Gaulle (Rosny) 2023-2024
Ce jeu se joue sur un terrain rectangulaire quadrillé à m lignes horizontales et n lignes verticales, avec m et n impairs. Le côté gauche du terrain représente le but du joueur G, et le côté droit celui du joueur D. Le jeu se joue sur les intersections des lignes, et non sur les cases. On place un jeton noir (appelé "ballon") sur le point central du terrain. Chaque joueur dispose d’une réserve de jetons blancs (appelés "joueurs").
Ensuite, chacun leur tour, les joueurs peuvent faire une (et une seule) des actions suivantes :
— placer un joueur sur une position vide.
— déplacer le ballon en sautant, éventuellement plusieurs fois consécutives, par-dessus un ou plusieurs joueurs voisins du ballon et alignés (horizontalement, verticalement ou en diagonale) et en arrivant sur la position suivante. Les joueurs utilisés lors de cette action sont retirés du terrain.
Le premier joueur (G ou D) qui amène le ballon sur la ligne de but de son adversaire, ou au-delà, gagne… voir la suite
Jeu du moulin
Collège Paul Gauguin (Paris)  2023-2024
Elaborer une stratégie pour le jeu du moulin.
Trouver les masses
Collège Paul Gauguin (Paris)  2023-2024
On possède plusieurs tubes dont on ne connaît pas les masses, peut-on établir des stratégies pour approximer
leurs masses sans balance ?
Snake
Collège Paul Gauguin (Paris)  2023-2024
Sur un plateau de jeu, un serpent essaye de manger une souris qui cherche à survivre le plus longtemps
possible. A chaque tour, le serpent grandit de façon à ce que sa tête avance d’une case et que son corps
occupe toutes les cases par lesquelles il est passé ; la souris, elle, se déplace d’1 ou 2 cases sans passer par
dessus le serpent. Quelle stratégie est la meilleure pour chaque animal ?
Le Blob et le labyrinthe
Collège Paul Gauguin (Paris)  2023-2024
Comment un blob peut-il trouver la sortie d'un labyrinthe. Trouve-t-il le chemin optimal ? Trouve-t-il toujours la sortie ?
Trajectoires dans l'espace, points de Lagrange
Lycée Stendhal (Milan)  2023-2024
Différents sujets autour des trajectoires de satellites dans l'espace. Problème de transfert d'une orbite à une autre, modification des trajectoires d'un corps satellisé, approche du problème à 2 corps puis du problème à 3 corps restreint, points de Lagrange.
Dominos
Lycée Blaise Pascal (Orsay)  2023-2024
L'objectif est de paver le plan avec des dominos
Babylone
Lycée Blaise Pascal (Orsay)  2023-2024
Après avoir déchiffré une tablette Babylonienne, les élèves s'intéresserons aux méthodes d'approximation des racines carrées.
Pise
Lycée Blaise Pascal (Orsay)  2023-2024
L'objet est d'étudier la stabilité de différents types de tours.
Chemins sur une grille
Lycée Blaise Pascal (Orsay)  2023-2024
L'objectif est de déterminer le nombre de chemins allant d'un point à un autre sur une grille
Structures
Lycée Blaise Pascal (Orsay)  2023-2024
L'objet est l'étude de différentes structures (triangulation, parenthésage, chemins sur une gille, arbres et nombre d'arêtes...) puis dans un deuxième temps comprendre pourquoi elles sont reliées entre elles par un même objet mathématique.
Commerce spatial
Collège Grimaux (Rochefort), Collège Fernand Garandeau (La Tremblade) 2023-2024
Au confins de l’univers se trouvent 5 planètes tournant au même rythme et sur la même orbite autour d’un même soleil. Suite à des guerres 4 des cinq planètes (la rouge, la bleue, la jaune et la verte) ne disposent plus que de 2 navettes spatiales quand la grise n’en a plus qu’une. Chaque planète a par contre gardé deux pistes d’atterrissage en état.
À partir d’une situation de départ donnée (chaque navette posée sur une planète, pas forcément la sienne) comment faire pour que, en respectant certaines règles chaque navette retourne sur sa planète ?
Doublement et triplement parfait
Collège Grimaux (Rochefort), Collège Fernand Garandeau (La Tremblade) 2023-2024
Un tableau à trois lignes et trois colonnes est dit tableau de tridouble si
• Les trois lignes contiennent chacune un nombre de trois chiffres.
• Le nombre de la deuxième ligne est le double de celui de la première ligne.
• Le nombre de la troisième ligne est le triple de celui de la première ligne.
On dit qu’un tableau de tridouble est parfait si chaque chiffre n’est utilisé qu’une seule fois dans le tableau.
Questions. Existe-t-il des tableaux de tridouble parfaits ? Si oui combien ?
Assemblage impossible de tortues
Collège Grimaux (Rochefort), Collège Fernand Garandeau (La Tremblade) 2023-2024
Un puzzle est composé de 9 pièces carrées, qu’il s’agit d’assembler pour former un carré en respectant les couleurs et les formes des tortues : on ne peut pas assembler deux têtes ou deux queues de tortues.
Combien y a-t-il de manières différentes de former un carré avec les neufs pièces si on ne cherche pas à respecter les couleurs ni même les formes des tortues ?
Est-il possible de proposer un puzzle « difficile » avec seulement 4 pièces ?
Jeu de cubes
Collège Grimaux (Rochefort), Collège Fernand Garandeau (La Tremblade) 2023-2024
On aligne en bas autant de cubes côte à côte qu’il y aura d’étages ; on surmonte chaque rangée d’une rangée possédant un cube de moins, ces cubes étant côte à côte, chaque cube étant placé exactement sur un cube de la rangée en dessous ; on colorie en gris un cube sur deux, comme sur un damier, en commençant par un cube gris en bas à gauche.
Quels sont tous les empilements possibles à 4, 5, 6 étages ?
• Quels est dans chacun des cas précédents le nombres de cubes gris ?
• Dans les cas précédents combien de configurations ont le même nombre de cubes gris que de cubes blancs ?
• Pour quels nombres d’étages inférieurs à 10 existe-t-il des configurations avec le même nombre de cubes gris que de cubes blancs ?
Choisir c'est renoncer
Lycée Jean Lurçat (Perpignan), Lycée Maillol (Perpignan), Lycée Arago (Perpignan) 2023-2024
Vous habitez dans une rue rectiligne avec deux arrêts de bus situés tous deux à égale distance de chez vous, l’un à droite, l’autre à gauche. Vous sortez de chez vous et ne savez pas lequel choisir. Vous faites un mètre à droite, puis hésitez à continuer ou à partir dans l’autre sens. Vos hésitations se reproduisent toutes les secondes et vous font opter à chaque instant, sans préférence, à faire un mètre à droite ou à gauche. Essayez de décrire vos pérégrinations !
Nombres en sandwich
Lycée Jean Lurçat (Perpignan), Lycée Maillol (Perpignan), Lycée Arago (Perpignan) 2023-2024
Un entier strictement positif k est dit “en sandwich” si on peut trouver un entier n > k tel que la somme des nombres de 0 à k − 1 est égale à la somme des nombres de k + 1 à n. Pourriez-vous trouver tous les nombres en sandwich, ainsi que, pour chacun d’eux, l’entier n correspondant ?
Le XV et au-delà
Lycée Jean Lurçat (Perpignan), Lycée Maillol (Perpignan), Lycée Arago (Perpignan) 2023-2024
Quels scores sont possibles au rugby ? Pour un score donné, combien de scénarios ont-ils pu y conduire ?
Ne parle pas la bouche pleine
Lycée Jean Lurçat (Perpignan), Lycée Maillol (Perpignan), Lycée Arago (Perpignan) 2023-2024
Vous croquez un Oreo. En supposant que votre bouche ait exactement la même forme que l’Oreo, où le croquer pour en manger la moitié d’un coup ? Même question avec d’autres formes.
La formule-à-Toto : le retour !
Lycée Jean Lurçat (Perpignan), Lycée Maillol (Perpignan), Lycée Arago (Perpignan) 2023-2024
Toto a du mal avec les formules. L’an dernier il pensait que la dérivée d’un produit était égale au produit des dérivées. Cette année il pense que la dérivée d’un quotient est égale au quotient des dérivées. Peut-il néanmoins avoir raison dans certains cas ?
Bizarre, vous avez dit bizarre !
Lycée Jean Lurçat (Perpignan), Lycée Maillol (Perpignan), Lycée Arago (Perpignan) 2023-2024
Dans la géométrie plane “classique” que vous pratiquez, le plan contient une infinité de points, par deux points distincts passe une et une seule droite et deux droites distinctes peuvent se couper (en un seul point) ou ne pas se couper (parallèles). Pourriez-vous imaginer une géométrie bizarre dans laquelle votre plan aurait un nombre fini N de points et les conditions suivantes seraient vérifiées :
i. vos droites auraient toutes le même nombre n < N de points ;
ii. par n’importe quel point du plan passeraient exactement n droites ;
iii. par deux points distincts du plan passerait une et une seule droite ;
iv. deux droites distinctes se couperaient toujours en un seul point ?
Le problème du bolduc
Collège Sainte-Marie (Langon)  2023-2024
 
Répartition des nombres premiers
Lycée Emile Duclaux (Aurillac)  2023-2024
On note P(n) le cardinal de l'ensemble des nombres premiers inférieurs ou égaux à n. Il s'agit de retrouver l'équivalent P(n) ~ n/ln(n) par l'expérimentation.
Les kaplas au dessus du vide
Lycée Emile Duclaux (Aurillac)  2023-2024
On empile un nombre N de kaplas de longueur L (parallélépipèdes en bois tous de la même taille) au bord d'une table, la longueur perpendiculaire à celui-ci. De quelle longueur, au maximum, la pile de kaplas peut-elle déborder au-dessus du vide au-delà de la table ? Peut-on, en augmentant N indéfiniment, atteindre un débordement arbitrairement grand ?
Découpage d'un gâteau
Collège Sainte-Marie (Langon)  2023-2024
Comment découper un gâteau en maximum de parts possibles, en donnant le minimum de coups de couteau possible ? On ne demande pas à ce que les parts soient égales !
Plus précisément, en combien de parts au maximum peut-on couper un gâteau avec 1 coup de couteau, 2 coups, 3 coups, etc ?
Peut-on trouver le nombre de parts maximum pour n coups de couteau ?
L'addition des cancres
Lycée Emile Duclaux (Aurillac)  2023-2024
Et si la somme des fractions a/b et c/d se faisait ainsi a/b+c/d=(a+c)/(b+d)?
Coder un rectangle par des carrés
Collège Sainte-Marie (Langon)  2023-2024
Pour caractériser la forme d’un rectangle, on considère souvent le rapport longueur/largeur. Par exemple, un écran 16/9 est un écran rectangulaire dont la proportion longueur/largeur est égale à 16/9. Ces écrans peuvent être grands ou petits, mais ils ont tous la même forme.
En reportant la largeur sur la hauteur si elle est plus grande (en pliant ou avec le compas), et le contraire sinon, on divise le rectangle en un carré et un rectangle plus petit. On regarde ce nouveau rectangle et on recommence. Par exemple avec un rectangle de 16 par 9, le découpage comprend successivement 1 carré pris dans la largeur, 1 dans la hauteur, 3 dans la largeur, 2 dans la hauteur puis on s’arrête puisqu’il ne reste plus rien. On code alors 1-1-3-2.
Questions :
• Comment retrouver les proportions des rectangles à partir de leurs codages ?
• Si on part de n’importe quelle forme, est-on sûr que le découpage s’arrête ?
• Comment comparer deux nombres si on connait juste leur codages ?
Nombres magiques
Collège Sainte-Marie (Langon)  2023-2024
On appelle nombre magique un nombre dont le carré, c’est-à-dire le nombre multiplié par lui-même, est symétrique par le milieu, comme par exemple 307, qui vérifie 307×307 = 94249.
Comment en construire d’autres ?
Est-il possible de construire des familles de tels nombres (par exemple 1, 11, 111, 1111, etc) ? Ces familles sont-elles infinies ?
L'awale sous-harmonique
Lycée Emile Duclaux (Aurillac)  2023-2024
Une fonction est sous-harmonique (respectivement sur-harmonique) lorsque sa valeur en tout point est inférieure ou égale (resp. supérieure ou égale) à la moyenne de ses valeurs au voisinage (définition volontairement vague et informelle...). En cas d'égalité, on parle de fonction harmonique.
L'Awalé est un jeu africain, se jouant à deux, qui consiste à répartir des graines dans un ensemble de cases selon une règle bien déterminée. Celui qui ne peut plus continuer le jeu a perdu. Dans l'Awalé sous-harmonique, le plateau de jeu est composé d'une ligne de plusieurs cases (le nombre de cases est noté C). Au début du jeu, on dispose un certain nombre de graines (mettons g) dans chaque case SAUF la dernière, et une autre quantité de graines (mettons G supérieur ou égal à g) dans la dernière case. Le premier joueur choisit une case intérieure (c'est-à-dire différente de la première et de la dernière) et rajoute des graines à sa convenance, mais en respectant la règle suivante :… voir la suite
Désitération
Faculté des Sciences d'Orsay  2023-2024
Est-ce qu'il existe une fonction f:R->R telle que f o f coïncide avec une fonction puissance ? avec la fonction exponentielle ?
Est-ce qu'on peut résoudre f o f o f = exp ?
Des idées pour poursuivre ?
Distributif
Faculté des Sciences d'Orsay  2023-2024
La multiplication des réels est distributive par rapport à l'addition. Question: quelle opération est distributive par rapport à la multiplication ?
Chou-Fleur
Collège Charles Sénard (Caluire-et-Cuire), Lycée La Martinière Diderot (Lyon) 2023-2024
Lorsqu'on procède à une désignation en faisant "chou-fleur" (par exemple pour savoir quel pays lancera le ballon dans un match, ou qui commencera entre 2 joueurs), y a-t-il moyen de savoir à l'avance qui gagnera ?
Distance entre les joueurs, taille des pieds , triche permise ou non ... y a-t-il des paramètres déterminants ?
Triplet d'entiers consécutifs
Collège Jean Bauhin (Audincourt)  2023-2024
On considère trois entiers consécutifs, et on calcule leur somme et leur produit.
Par exemple : 3, 4 et 5. Ensuite : 3 + 4 + 5 = 12 ; 3 × 4 × 5 = 60.
Ou alors : 835, 836, 837. Ensuite : 835 + 836 + 837 = 2 508 ; 835 × 836 × 837 = 584 276 220.
On remarque que la somme est un multiple de trois et que le produit est multiple de six.
Généraliser la remarque à tout triplet d’entiers consécutifs.
Établir des propriétés arithmétiques et géométriques des triplets d’entiers consécutifs.
Rencontre au sommet
Collège Jean Bauhin (Audincourt)  2023-2024
Alice et Bob courent autour d’un stade d'athlétisme. Alice met 7 minutes pour faire le tour du stade. Bob quand à lui met 11 minutes. Ils partent les deux du même points de départ. Lorsque Alice part le chronomètre affiche 2 minutes. Bob part ensuite. Le chronomètre est à 4 minutes.
(1) Qu’indiquera le chronomètre la première fois que Alice et Bob se croiseront à leur point de départ ?
(2) Ils ont décidé de courir pendant deux heures. Combien de fois vont-il se croiser au point de départ ?
La comète de Halley a été aperçue en 1986 la dernière fois et elle passe toutes les 76 ans. La comète de Gauss a été aperçue la dernière fois en 1954 et elle passe toutes les 105 ans.
(1) Dans combien de temps pourra-t-on voir ces deux comètes en même temps ?
(2) Quelles sont toutes les années où ce phénomène aura lieu ?
Généralisation : soient p1, p2 deux nombres premiers et soient x1, x2 deux entiers naturels, on reprend le problème avec Alice et Bob. Cependant Alice met… voir la suite
Récolte de maïs
Collège Jean Bauhin (Audincourt)  2023-2024
Cinq paysans mettent leur récolte d'épis de maïs ensemble de la même silo. Cependant une nuit un premier paysan se lève. Il coupe la récolte d’épis en cinq parts égales, il en cache quatre parts pour lui-même et laisse le reste. Il retourne ensuite se coucher. Un deuxième paysan se lève fait la même chose avec le tas qu’il reste puis il se rendort. Ainsi de suite pour le troisième, quatrième et cinquième paysan. Combien y avait-il d’épis de maïs au minimum au départ ?
Variantes :
(1) Même question avec n paysans où n est un entier naturel.
(2) Il y a une souris dans le silo qui récupère des épis pour elle. Juste avant qu’un paysan ne partage le tas, la souris prend un épi pour elle. Même question dans ce nouveau cadre.
(3) Même question avec n paysans, où n est un entier naturel, et la souris.
Le triple saut
Vauban, École et Lycée Français de Luxembourg  2023-2024
On choisit une position de départ.
A l’aide de 3 dés on calcule la longueur de l’élan.
Puis on relance les 3 dés qu’on ajoute à la position obtenue pour voir la longueur du saut.
SOS pour les travaux publics
Lycée Léonce Vieljeux (La Rochelle), Lycée Valin (La Rochelle) 2023-2024
Est-il possible de raccorder 3 maisons à l'eau, l'électricité et la fibre sans faire croiser les réseaux ?
Plus généralement, étudier le cas de n maisons à relier à n points: quel est le nombre minimal de croisements ?
Opération bizarre
Lycée Léonce Vieljeux (La Rochelle), Lycée Valin (La Rochelle) 2023-2024
Définition d'un opérateur entre 2 nombres entiers
Des goûts et des couleurs
Lycée Léonce Vieljeux (La Rochelle), Lycée Valin (La Rochelle) 2023-2024
1/ Blanche et Gilles jouent à tour de rôle, Blanche commence en coloriant une case d'une ligne d'une couleur (vert, jaune ou rouge) ; Blanche gagne si 3 cases successives contiennent les 3 couleurs ; Gilles doit l'en empêcher. Stratégie gagnante pour l'un ou l'autre ?
2/ Idem avec 4 couleurs sur une ligne limitée à 11 cases, sachant que Gilles ne peut colorier une case limitrophe à celle que Blanche vient de colorier.
L'héritage
Lycée Léonce Vieljeux (La Rochelle), Lycée Valin (La Rochelle) 2023-2024
Une sœur et un frère héritent d'un terrain en forme de quadrilatère convexe avec un pommier sur l'un des côtés ; est-il possible de couper, par un trait passant par le pommier, le terrain en 2 parties de même aire ?
Les carreaux traversants
Lycée Jacques Monod (Saint-Jean de Braye)  2023-2024
Sur des carreaux de côté 1, on dessine deux chemins qui joignent les côtés deux à deux (opposés ou consécutifs). On carrelle ensuite une pièce rectangulaire.
Des vagues de cailloux ?
Lycée Jacques Monod (Saint-Jean de Braye)  2023-2024
On considère un nombre infini de boîtes alignées. Chaque boîte peut être vide ou contenir un caillou. Un chariot avance, quand il arrive sur une boîte libre, il dépose un caillou s'il en a un réserve, sinon il ne fait rien. Quand il arrive sur une boîte avec un caillou, il le prend. Que se passe-t-il quand on fait passer le chariot un grand nombre de fois? Peut-on prédire la solution finale? Peut-on retrouver la condition initiale?


Les univers de Pacman
Lycée Jacques Monod (Saint-Jean de Braye)  2023-2024
Dans le jeu, Pacman semble de déplacer sur un carré sauf que, quand il sort part la droite il rentre par la gauche et quand il sort par le haut, il rentre par le bas. Ainsi, les bords du carré ne correspondent à aucune réalité pour lui : il se déplace sur une surface sans avoir conscience des bords. En se donnant plusieurs carreaux et un "patron", décrire la surface sur laquelle se déplace Pacman?
Voyage en train
Lycée Vaclav Havel (Bègles), Lycée Alfred Kastler (Talence) 2023-2024
C’est le voyage pour le congrès de MATh.en.JEANS. Les participants prennent le train et cherchent les chemins les plus probabales
Mariage
Lycée Vaclav Havel (Bègles), Lycée Alfred Kastler (Talence) 2023-2024
Deux anciens élèves de mathenjeans se marient et ont besoin des mathématiques pour créer des porte-noms pour leurs invités
Répartir n points sur une sphère
Lycée Pierre Mendès-France (Tunis), Lycée Alexandre Dumas (Alger) 2023-2024
Comment répartir n points sur une sphère de sorte que la plus petite de leurs distances mutuelles soit aussi élevée que possible

Points voisins
Lycée Pierre Mendès-France (Tunis), Lycée Alexandre Dumas (Alger) 2023-2024
On considère une partie X du plan constituée d'un nombre fini de points chacun colorié en bleu ou en jaune. Certains points de X sont reliés entre eux par des traits. On attribue à chaque point jaune un nombre réel et on se pose la question suivante :
Peut-on attribuer à chaque point bleu un nombre réel égal à la moyenne des nombres attribués à ses voisins ?
Les voisins d'un point M de X sont les points reliés à M par un trait.

Une liste parfaite
Lycée Pierre Mendès-France (Tunis), Lycée Alexandre Dumas (Alger) 2023-2024
Une liste finie d'entiers naturels non nuls est dite parfaite si chacun de ses entiers divise la somme de tous les autres. Par exemple la liste (2,4 ,2) est parfaite. Mais celle-ci (1,2) ne l'est pas. La liste (1,1,...,1) constituée de n uns est parfaite.
Peut-on trouver une liste parfaite de longueur n fixée dont tous les entiers sont des entiers distincts deux à deux ?
Les billes de billard
Collège l’Impernal (Luzech), Lycée Clément Marot (Cahors) 2023-2024
Cette entreprise a conçu un nouveau modèle de billes de billard ultra résistantes, et veut tester leur solidité en décidant de quel étage on peut les lâcher depuis l'immeuble de l'entreprise sans qu'elles se brisent à l'impact. On dispose seulement de deux billes prototypes, et l'immeuble fait 100 étages de haut.
En combien d'essais* au minimum peut-on déterminer à coup sûr l'étage maximal depuis lequel on peut lâcher une bille sans qu'elle se casse ?**
* Lâcher les deux billes en même temps compte pour deux essais.
** On supposera que les billes qui survivent à un essai ne sont pas fragilisées par l'essai.
L'araignée et la mouche
Collège l’Impernal (Luzech), Lycée Clément Marot (Cahors) 2023-2024
Une boîte parallélépipédique de 20 cm × 10 cm × 10 cm posée sur une table. Une araignée se trouve au pied de la boîte, juste au milieu d'un des côtés de 10 cm. Une mouche se pose à un endroit quelconque de la boîte. L'araignée sait déterminer le chemin le plus court qui mène à la mouche tout en restant sur la boîte. La longueur L de ce chemin dépend de l'endroit où s'est posée la mouche. En se posant au bon endroit sur la boîte, la mouche peut rendre L le plus grand possible.
Quelle est cette valeur maximale de L ?
Parts égales?
Collège l’Impernal (Luzech), Lycée Clément Marot (Cahors) 2023-2024
Géo a inventé un robot découpeur de tartes. Il est muni d'un tranchoir inamovible et d'un plateau tournant. On y dépose la tarte dans la machine, celle-ci la centre, actionne le tranchoir, ce qui découpe un rayon, puis fait tourner la tarte de l'angle θ, découpe un nouveau rayon, fait tourner la tarte, etc... On peut régler le nombre de coups de tranchoir et l'angle θ avant de lancer la machine. Géo s'amuse alors à découper au delà du tour complet et remarque que les parts ainsi obtenues ont des tailles différentes.
1. Par exemple il a réussi à régler θ pour obtenir 5 parts de 2 tailles différentes, 2 grandes parts et 3 petites. Quelles sont les valeurs de θ qui permettent cela ?
1. Pouvez-vous trouver un réglage pour obtenir 13 grandes parts et 5 petites ?
2. Trouver un réglage qui fait 4 tailles différentes.
3. Est-ce que le nombre de parts de chaque taille peut être quelconque ?
Forcer la chance
Collège La Sine (Vence)  2023-2024
Après avoir compris la notion de probabilité et le lien avec les fréquences statistiques, les élèves traitent différents problèmes sur les lancers de dés, les dates d'anniversaire, la planche de Galton...
Rubik's cube & Maths
École Française Jules Verne de Riga  2023-2024
 
Qu'avec des Uns
Collège Pierre Fouché (Ille-sur-Têt), Collège Gustave Violet (Prades) 2023-2024
Quels nombres entiers peut-on obtenir par un calcul utilisant uniquement n fois le nombre 1, des parenthèses (· · · ) et les opérations + et × ?
Premières ordonnées
Collège Pierre Fouché (Ille-sur-Têt), Collège Gustave Violet (Prades) 2023-2024
 
Un casse-tête
Lycée Alfred Mézière (Longwy)  2023-2024
Le sujet est basé sur un jeu, dont le but est de passer d’une combinaison de jetons (de différentes couleurs) à une autre, par l’intermédiaire d’une roue. Il existe 3 séries différentes de cartes, pour lesquelles on se pose ces 4 questions :
_ Quel serait un modèle mathématique du jeu ?
_ Peut-on trouver un algorithme de résolution ?
_ Peut-on trouver un algorithme qui donne des solutions optimales ?
_ Peut-on imaginer de nouvelles cartes qui n’auraient pas de solution ?
Transcodage
Lycée Alfred Mézière (Longwy)  2023-2024
Comment transmettre un message en binaire, de manière la plus courte possible ?

Le problème consiste à transmettre un message en binaire. La difficulté est de convertir les 26 lettres de l’alphabet et l’espace, en suites de 1 et de 0, de façon à ce que le rendu binaire soit le plus court possible, mais qu’il puisse être décrypté.
Des horloges plus ou moins étranges !
Collège Marcel Pagnol (Noyen sur Sarthe), Lycée Lavoisier (Mayenne) 2023-2024
Quelle heure est-il lorsque les aiguilles d'une horloge (minutes et heures) sont superposées ?
Faire des dames
Lycée Jehan de Beauce (Chartres)  2023-2024
Un nombre pair n > 2 de pions sont placés en ligne sur la table. L’objectif est d’obtenir n/2 ”dames” (piles de 2 pions) en n/2 mouvements. Pour le premier mouvement, un pion peut sauter par-dessus son voisin (de gauche ou de droite) pour former une dame. Pour le second mouvement, un pion doit sauter par-dessus exactement deux pions (qui peuvent être soit deux pions seuls, soit deux pions formant une dame). Au 3e mouvement, un pion doit sauter au-dessus de 3 pions exactement et ainsi de suite.
Pour quelles valeurs de n existe-t-il une solution ?
Uniquement des sauts
Lycée Jehan de Beauce (Chartres)  2023-2024
On se déplace sur un segment [AB] de longueur 1 de la manière suivante :
— On part du point A.
— Si on se trouve en un point P du segment, on saute (au choix) soit sur le milieu de [AP], soit sur le milieu de [PB].
On veut approcher un point X fixé à un millionième près.
Est-ce toujours possible ? Combien de sauts faut-il alors ?
Enlèvement extra-terrestre
Lycée Jehan de Beauce (Chartres)  2023-2024
Une flotille de soucoupes volantes a été envoyée par la planète Ethernium pour ramener tous les habitants d’un immeuble de Chartres et les présenter dans leur zoo. Cet immeuble terrien contient 11 hommes et 14 femmes.
Les soucoupes arrivent une par une et prélèvent aléatoirement les personnes. Cependant, du fait de la politique ethernienne de stricte séparation des sexes, une soucoupe de peut pas transporter en même temps un homme et une femme. Par conséquent, chaque soucoupe continue son prélèvement tant que le sexe des humains prélevés reste le même. Si ils prennent une personne d’un autre sexe, alors cette personne est immédiatement replacée dans l’immeuble et la soucoupe s’en va avec son chargement et la soucoupe suivante se présente pour continuer l’enlèvement selon la même procédure, et ce jusqu’à ce que l’immeuble soit totalement vide. Quelle est la probabilité que la dernière personne enlevée soit une femme ?
Transformer l’essai
Lycée Jehan de Beauce (Chartres)  2023-2024
Au rugby, après un essai, l'équipe qui a marqué tente une transformation. Le botteur doit frapper le ballon posé au sol avec le pied pour le faire passer au-dessus de la barre transversale et entre les poteaux. Il choisit où il place la balle sur une ligne parallèle aux lignes de touche et passant par le point où l’essai a été marqué. Où le joueur doit-il placer le ballon pour maximiser ses chances de réussite ?
Ping game
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
Using a row of counters, white on one side and black on the other. Starting with n number of black counters which all need to be turned to white according to the following rule: when we indicate a counter, the counters either side are turned to white. How should we proceed?
Gravity calculator
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
We need to code two numbers with beads and then make a circuit so that when all the beads are released, we obtain the result of the sum of the two numbers.
Modelling of forest fires
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
 
Repeat patterns
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
We apply a ruler ti a black triangle whose point is up. We connect the mid-point of its sides and then remove the newly-formed triangle, thus obtaining three new black triangles.
We observe one triangle with side 1. What can be said about the number of triangles and points of x steps of the above rule?
Scaffolding
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
 
Constructing polyhedrons
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
Using solid or empty rods. You need to construct solid polyhedrons. The goal is to manage to create giant polyhedrons which do not collapse.
You may like to start with Platonic solids
Soap bubbles
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
For a polygon P we try to work out the shortest route passing via the vertexes of P. In physical terms, this means working out how a film of soap would arrange itself in ordre to link up all the vertexes of a polygon.
Awelé or Mancala game
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
 
The marmots
Lycée Val de Durance (Pertuis), Colegiul National Emil Racovita (Cluj - Roumanie) 2023-2024
A group of marmots decide to dig a new burrow for the coming winter, but this year they decide to optimize its layout. The problem is that marmots are light sleepers, which means that two rules need to be considered, plus a further one to stop the structure from caving in
The indecisive gardener
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
A gardener wants to create zones in his circular garden using strings.
1. How many zones can we create with $n$ strings, at the most?
2. We shall also study the following generalization: obstacles on the zone, juxtaposition of disks.
Checkmate
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
We consider a 8 x 8 chessboard. We place a queen on it. Then, we place a second queen without her being eaten by the first one, etc.
1. How many queens can we put on the chessboard?
2. Same question with the knight, the bishop and another piece for which we can choose its move.
Triangles and squares
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
Let’s consider a game with a certain number of tokens, all of them are the same. As you are handling them, you realize that you can place them one against the others so that they shape an equilateral triangle or a complete square.
What are the numbers of tokens that make this possible?
The shepherd and his herd
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
A shepherd owns a 100-meter long fence but he has only got three stakes.
1. How should he place the stakes for his sheep to have the maximum surface to graze?
2. What if he has got four stakes instead of three?
Triangles and probabilities
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
1. Assume a stick is randomly broken into three pieces. What is the probability that the obtained pieces can form a triangle?
2. Let be the following numbers: 1, 2, 3, 4,…, n. We randomly choose 3 of them. What is the probability that the chosen numbers can be the lengths of the sides of a triangle?
3. We are wondering what happens if we modify problem 2, considering another sets of numbers. For example, what is probability for the set {1^2, 2^2,...., n^2} or {1^3,2^3,...., n^3} etc.
4. Secondly, what is the probability that four randomly chosen numbers of these sets can be the lengths of the sides of a quadrilateral?
Consecutive integer numbers
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
The following equalities 5 = 2+3; 10 = 1+2+3+4; 12 = 3+4+5 show that 5, 10 and 12 can be written like the sum of at least two consecutive integer numbers. 
1. Is this true for 18? What about 16?
2. Which positive integer numbers are the sum of at least two strictly positive integer numbers? 
The score at rugby
Colegiul National Mihail Eminescu (Satu Mare - Roumanie), Lycée Emmanuel d'Alzon (Nîmes), Lycée Bellevue (Alès) 2023-2024
 In a simplified version of a rugby game, players are able to score 3 or 5 points only. In these conditions, they can score 8 points but not 7.
1. What are the scores a team can get?
2. Can we get all the integer numbers from a certain number of points?
3. What happens when players follow the regular rules of rugby (with the conversion of trials)?
Compter sans compter
Lycée français Van Gogh (La Haye)  2023-2024
Les biologistes des poissons recherchent une méthode pour estimer le nombre de poissons (d'une certaine espèce) présents dans un lac.
Ils ont prévu de le faire en attrapant et en marquant les poissons puis ils les relâchent dans le lac. Lendemain, ils attrapent des poissons et comptent ceux qui sont marqués.
Qu’en pensez-vous ?
Motifs labyrinthiques
Lycée français Van Gogh (La Haye)  2023-2024
L'objet de cette expérience est de plier à plusieurs reprises des bandes de papier sans les déplier entre chaque pli. Une fois tous les plis réalisés, il vous suffit de déplier la bande pour observer le motif qui en résulte.
Objectifs :
• Appréhender le problème
• Décrire les motifs obtenus après différents pliages
• Anticiper les motifs sans avoir à effectuer les pliages réellement
Polygonalisation d’aires optimales
Lycée français Van Gogh (La Haye)  2023-2024
Le problème de polygonisation d’aire optimale prend un ensemble de points S en entrée et recherche en sortie un polygone simple ayant S comme ensemble de sommets et d’aire minimale ou maximale.
Le jeu du gendarme et du voleur
Lycée Raynouard (Brignoles)  2023-2024
Certains plateaux de jeu (comme celui de Scotland Yard) peuvent se voir comme des graphes. Il y a des positions (sommets) qui sont reliées par des traits (des arêtes).
Le jeu des Gendarmes et du Voleur est le jeu à deux joueurs suivant :
Le premier joueur est la Gendarmerie et possède k gendarmes (k pions).
Le deuxième joueur est le Voleur (1 pion).
La Gendarmerie commence et place ses pions-gendarmes sur les sommets du graphe (deux pions peuvent être sur la même position); puis le Voleur place son pion sur un sommet.
Ensuite, la Gendarmerie et le Voleur déplacent leurs pions à tour de rôle. A chaque tour, un pion peut soit rester sur le sommet qu’il occupe soit aller sur un sommet voisin (relié au sommet actuel par une arête). Le but du jeu pour la Gendarmerie est d’attraper le Voleur, et le but pour le Voleur est de ne pas se faire attraper (soit durant un certain nombre de tour, soit parce qu’il ne pourra jamais se faire attraper)

Pour certains graphes… voir la suite
Processus de croissance aléatoire
Lycée Raynouard (Brignoles)  2023-2024
On part d’un quadrillage infini avec un point de départ noir et le reste des carreaux sont blancs.
A chaque tour, on se déplace aléatoirement sur une des cases contiguës, si celle-ci est noire, on recommence, sinon on colorie la case en noir et on revient au point de départ.
Que va-t-il se passer si on répète 100 fois ce procédé ? 1000 fois ?

Prolongement 1 : en modifiant les chances d’aller sur une case plutôt qu’une autre à chaque tour, est-ce que le résultat final change beaucoup ? Peut-on dessiner n’importe quelle forme ?

Prolongement 2 : A chaque retour au point de départ, les cases noircies deviennent grises (mais sont encore considérées comme noires ) et si on ne retombe pas dessus durant 10 parties (on appellera partie une succession de sauts. La partie s’arrête si on tombe sur une case blanche), la case redevient blanche. Que cela change-t-il ?
Répartition de chaleur
Lycée Raynouard (Brignoles)  2023-2024
On considère une pièce, représentée par un rectangle, et on cherche à savoir comment la chaleur se répartit dans la pièce quand on impose la température sur les bords (murs, sol et plafond). Physiquement, la température dans une zone est la moyenne arithmétique des températures des zones voisines, par exemple si les pièces sont les cases d'un quadrillage, la température d'une pièce intérieure est la moyenne de ses quatre voisines. On supposera que les températures sur le bord sont fixées.
On s’intéressera aux questions suivantes : Peut-on toujours remplir un rectangle ? Comment faire ? Pour des températures fixées au bord, existe-t-il plusieurs répartitions de températures admissibles ?
Un premier exemple simple : que se passe-t-il si toutes les températures au bord sont égales à 0 ?
On pourra aussi considérer des cas un peu plus compliqués, par exemple si on suppose que certaines parties du bord sont munies d’un isolant. Dans ce cas la température est la moyenne des… voir la suite
Liaison satellite
Lycée Raynouard (Brignoles)  2023-2024
Un satellite de télécommunications géostationnaire est censé recevoir un nombre n de signaux émis depuis une source sur terre et les renvoyer vers leur destination également sur terre.
Pour cela, il dispose d'antennes de réception qui captent les signaux émis et d'antennes d'émission qui les renvoient. Malheureusement, les antennes peuvent tomber en panne (principalement si elles sont heurtées par un débris) et les pannes ne peuvent pas être réparées, le satellite étant à 36 000 km du sol.
Les constructeurs prévoient donc de mettre k antennes de réception et k antennes d'émission supplémentaires, afin de pouvoir tolérer k pannes reliées par un réseau d’interconnexion.
Ce réseau est constituée de commutateurs à quatre pattes (p1, p2, p3, p4) qui en changeant de position permettent de connecter p1 à p2 et p3 à p4 ou p1 à p3 et p2 à p4, ou p1 à p4 et p2 à p3. (Deux signaux différents peuvent passer par un commutateur mais emprunter des pattes différentes.)
Il… voir la suite
Forming puzzles. Patterns using geometrical shapes
Colegiul Național din Iași (Iași - Roumanie)  2023-2024
The purpose of our research project was to find and demonstrate different ways we can cut and use squares in order to make different geometrical shapes.
La logique au service des jeux
Collège Albert Camus (Miramas)  2023-2024
Étude et création de jeux de logiques
Se faire des nœuds au cerveau
Lycée Baudelaire (Annecy), Lycée de l'Albanais (Rumilly) 2023-2024
Vos missions si vous les acceptez :
1) faire passer sa tête à travers un ruban de Moebius ! Vous pouvez découper l’intérieur du ruban mais il doit rester en un seul morceau.
2) faire passer sa tête à travers un carré de papier de 10cm de côté ! Vous pouvez découper l’intérieur du carré mais la feuille doit rester en un seul morceau.
Peut-on voir le Mont-Blanc depuis la tour Eiffel ?
Lycée Baudelaire (Annecy), Lycée de l'Albanais (Rumilly) 2023-2024
La tour Eiffel possède la plus haute plateforme d’observation à 279, 11 mètres.
Jusqu’où peut-on voir ? Peut-on voir le Mont-Blanc qui culmine à 4807 m ?
Peut-on tout représenter avec des traits ?
Lycée Baudelaire (Annecy), Lycée de l'Albanais (Rumilly) 2023-2024
Nous disposons de 9 clous uniformément répartis sur un cercle de rayon 3 carreaux et d’une ficelle suffisamment longue. En reliant les clous entre eux à l’aide de la ficelle, comment reproduire une image pixelisée donnée ?

Iterations with tetrahedra
Colegiul Național din Iași (Iași - Roumanie)  2023-2024
Trouver la surface et le volume des "tétraèdres" de type 3D fractals